docs / huggingface_segment-anything-2.txt
danidarko's picture
Upload 59 files
b1d4de0 verified
raw
history blame
160 kB
# File: segment-anything-2-coreml-conversion/coreml/export.py
import argparse
import os
import enum
from typing import List, Optional, Tuple
import ast
import torch
import numpy as np
from PIL import Image
from PIL.Image import Resampling
import coremltools as ct
from coremltools.converters.mil._deployment_compatibility import AvailableTarget
from coremltools import ComputeUnit
from coremltools.converters.mil.mil.passes.defs.quantization import ComputePrecision
from coremltools.converters.mil import register_torch_op
from coremltools.converters.mil.mil import Builder as mb
from sam2.sam2_image_predictor import SAM2ImagePredictor
class SAM2Variant(enum.Enum):
Tiny = 'tiny'
Small = 'small'
BasePlus = 'base-plus'
Large = 'large'
def fmt(self):
if self == SAM2Variant.BasePlus:
return 'BasePlus'
return self.value.capitalize()
SAM2_HW = (1024, 1024)
def parse_args(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser.add_argument('--output-dir', type=str, default='.', help='Provide location to save exported models.')
parser.add_argument('--variant', type=lambda x: getattr(SAM2Variant, x), choices=[variant for variant in SAM2Variant], default=SAM2Variant.Small, help='SAM2 variant to export.')
parser.add_argument('--points', type=str, help="List of 2D points, e.g., '[[10,20], [30,40]]'")
parser.add_argument('--boxes', type=str, help="List of 2D bounding boxes, e.g., '[[10,20,30,40], [50,60,70,80]]'")
parser.add_argument('--labels', type=str, help='List of binary labels for each points entry, denoting foreground (1) or background (0).')
parser.add_argument('--min-deployment-target', type=lambda x: getattr(AvailableTarget, x), choices=[target for target in AvailableTarget], default=AvailableTarget.iOS17, help='Minimum deployment target for CoreML model.')
parser.add_argument('--compute-units', type=lambda x: getattr(ComputeUnit, x), choices=[cu for cu in ComputeUnit], default=ComputeUnit.ALL, help='Which compute units to target for CoreML model.')
parser.add_argument('--precision', type=lambda x: getattr(ComputePrecision, x), choices=[p for p in ComputePrecision], default=ComputePrecision.FLOAT16, help='Precision to use for quantization.')
return parser
@register_torch_op
def upsample_bicubic2d(context, node):
x = context[node.inputs[0]]
output_size = context[node.inputs[1]].val
scale_factor_height = output_size[0] / x.shape[2]
scale_factor_width = output_size[1] / x.shape[3]
align_corners = context[node.inputs[2]].val
x = mb.upsample_bilinear(x=x, scale_factor_height=scale_factor_height, scale_factor_width=scale_factor_width, align_corners=align_corners, name=node.name)
context.add(x)
class SAM2ImageEncoder(torch.nn.Module):
def __init__(self, model: SAM2ImagePredictor):
super().__init__()
self.model = model
@torch.no_grad()
def forward(self, image):
(img_embedding, feats_s0, feats_s1) = self.model.encode_image_raw(image)
return (img_embedding, feats_s0, feats_s1)
def validate_image_encoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, image: Image.Image):
prepared_image = image.resize(SAM2_HW, Resampling.BILINEAR)
predictions = model.predict({'image': prepared_image})
image = np.array(image.convert('RGB'))
tch_image = ground_model._transforms(image)
tch_image = tch_image[None, ...].to('cpu')
(ground_embedding, ground_feats_s0, ground_feats_s1) = ground_model.encode_image_raw(tch_image)
(ground_embedding, ground_feats_s0, ground_feats_s1) = (ground_embedding.numpy(), ground_feats_s0.numpy(), ground_feats_s1.numpy())
img_max_diff = np.max(np.abs(predictions['image_embedding'] - ground_embedding))
img_avg_diff = np.mean(np.abs(predictions['image_embedding'] - ground_embedding))
s0_max_diff = np.max(np.abs(predictions['feats_s0'] - ground_feats_s0))
s0_avg_diff = np.mean(np.abs(predictions['feats_s0'] - ground_feats_s0))
s1_max_diff = np.max(np.abs(predictions['feats_s1'] - ground_feats_s1))
s1_avg_diff = np.mean(np.abs(predictions['feats_s1'] - ground_feats_s1))
print(f'Image Embedding: Max Diff: {img_max_diff:.4f}, Avg Diff: {img_avg_diff:.4f}')
print(f'Feats S0: Max Diff: {s0_max_diff:.4f}, Avg Diff: {s0_avg_diff:.4f}')
print(f'Feats S1: Max Diff: {s1_max_diff:.4f}, Avg Diff: {s1_avg_diff:.4f}')
def validate_prompt_encoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, unnorm_coords, labels):
predictions = model.predict({'points': unnorm_coords, 'labels': labels})
(ground_sparse, ground_dense) = ground_model.encode_points_raw(unnorm_coords, labels)
ground_sparse = ground_sparse.numpy()
ground_dense = ground_dense.numpy()
sparse_max_diff = np.max(np.abs(predictions['sparse_embeddings'] - ground_sparse))
sparse_avg_diff = np.mean(np.abs(predictions['sparse_embeddings'] - ground_sparse))
dense_max_diff = np.max(np.abs(predictions['dense_embeddings'] - ground_dense))
dense_avg_diff = np.mean(np.abs(predictions['dense_embeddings'] - ground_dense))
print('Sparse Embeddings: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(sparse_max_diff, sparse_avg_diff))
print('Dense Embeddings: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(dense_max_diff, dense_avg_diff))
assert np.allclose(predictions['sparse_embeddings'], ground_sparse, atol=0.009)
assert np.allclose(predictions['dense_embeddings'], ground_dense, atol=0.001)
def validate_mask_decoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, image_embedding, sparse_embedding, dense_embedding, feats_s0, feats_s1, precision: ComputePrecision):
predictions = model.predict({'image_embedding': image_embedding, 'sparse_embedding': sparse_embedding, 'dense_embedding': dense_embedding, 'feats_s0': feats_s0, 'feats_s1': feats_s1})
(ground_masks, scores) = ground_model.decode_masks_raw(image_embedding, sparse_embedding, dense_embedding, [feats_s0, feats_s1])
ground_masks = ground_masks.numpy()
masks_max_diff = np.max(np.abs(predictions['low_res_masks'] - ground_masks))
masks_avg_diff = np.mean(np.abs(predictions['low_res_masks'] - ground_masks))
print('Masks: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(masks_max_diff, masks_avg_diff))
atol = 0.07 if precision == ComputePrecision.FLOAT32 else 0.3
assert np.allclose(predictions['low_res_masks'], ground_masks, atol=atol)
print(f"Scores: {predictions['scores']}, ground: {scores}")
class SAM2PointsEncoder(torch.nn.Module):
def __init__(self, model: SAM2ImagePredictor):
super().__init__()
self.model = model
@torch.no_grad()
def forward(self, points, labels):
prompt_embedding = self.model.encode_points_raw(points, labels)
return prompt_embedding
class SAM2MaskDecoder(torch.nn.Module):
def __init__(self, model: SAM2ImagePredictor):
super().__init__()
self.model = model
@torch.no_grad()
def forward(self, image_embedding, sparse_embedding, dense_embedding, feats_s0, feats_s1):
(low_res_masks, iou_scores) = self.model.decode_masks_raw(image_embedding, sparse_embedding, dense_embedding, [feats_s0, feats_s1])
return (low_res_masks, iou_scores)
def export_image_encoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision) -> Tuple[int, int]:
image = Image.open('../notebooks/images/truck.jpg')
image = np.array(image.convert('RGB'))
orig_hw = (image.shape[0], image.shape[1])
prepared_image = image_predictor._transforms(image)
prepared_image = prepared_image[None, ...].to('cpu')
traced_model = torch.jit.trace(SAM2ImageEncoder(image_predictor).eval(), prepared_image)
scale = 1 / (0.226 * 255.0)
bias = [-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225]
mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(name='image', shape=(1, 3, SAM2_HW[0], SAM2_HW[1]), scale=scale, bias=bias)], outputs=[ct.TensorType(name='image_embedding'), ct.TensorType(name='feats_s0'), ct.TensorType(name='feats_s1')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision)
image = Image.open('../notebooks/images/truck.jpg')
validate_image_encoder(mlmodel, image_predictor, image)
output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}ImageEncoder{precision.value.upper()}')
mlmodel.save(output_path + '.mlpackage')
return orig_hw
def export_points_prompt_encoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, input_points: List[List[float]], input_labels: List[int], orig_hw: tuple, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision):
image_predictor.model.sam_prompt_encoder.eval()
points = torch.tensor(input_points, dtype=torch.float32)
labels = torch.tensor(input_labels, dtype=torch.int32)
unnorm_coords = image_predictor._transforms.transform_coords(points, normalize=True, orig_hw=orig_hw)
(unnorm_coords, labels) = (unnorm_coords[None, ...], labels[None, ...])
traced_model = torch.jit.trace(SAM2PointsEncoder(image_predictor), (unnorm_coords, labels))
points_shape = ct.Shape(shape=(1, ct.RangeDim(lower_bound=1, upper_bound=16), 2))
labels_shape = ct.Shape(shape=(1, ct.RangeDim(lower_bound=1, upper_bound=16)))
mlmodel = ct.convert(traced_model, inputs=[ct.TensorType(name='points', shape=points_shape), ct.TensorType(name='labels', shape=labels_shape)], outputs=[ct.TensorType(name='sparse_embeddings'), ct.TensorType(name='dense_embeddings')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision)
validate_prompt_encoder(mlmodel, image_predictor, unnorm_coords, labels)
output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}PromptEncoder{precision.value.upper()}')
mlmodel.save(output_path + '.mlpackage')
def export_mask_decoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision):
image_predictor.model.sam_mask_decoder.eval()
s0 = torch.randn(1, 32, 256, 256)
s1 = torch.randn(1, 64, 128, 128)
image_embedding = torch.randn(1, 256, 64, 64)
sparse_embedding = torch.randn(1, 3, 256)
dense_embedding = torch.randn(1, 256, 64, 64)
traced_model = torch.jit.trace(SAM2MaskDecoder(image_predictor), (image_embedding, sparse_embedding, dense_embedding, s0, s1))
traced_model.eval()
mlmodel = ct.convert(traced_model, inputs=[ct.TensorType(name='image_embedding', shape=[1, 256, 64, 64]), ct.TensorType(name='sparse_embedding', shape=ct.EnumeratedShapes(shapes=[[1, i, 256] for i in range(2, 16)])), ct.TensorType(name='dense_embedding', shape=[1, 256, 64, 64]), ct.TensorType(name='feats_s0', shape=[1, 32, 256, 256]), ct.TensorType(name='feats_s1', shape=[1, 64, 128, 128])], outputs=[ct.TensorType(name='low_res_masks'), ct.TensorType(name='scores')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision)
validate_mask_decoder(mlmodel, image_predictor, image_embedding, sparse_embedding, dense_embedding, s0, s1, precision)
output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}MaskDecoder{precision.value.upper()}')
mlmodel.save(output_path + '.mlpackage')
Point = Tuple[float, float]
Box = Tuple[float, float, float, float]
def export(output_dir: str, variant: SAM2Variant, points: Optional[List[Point]], boxes: Optional[List[Box]], labels: Optional[List[int]], min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision):
os.makedirs(output_dir, exist_ok=True)
device = torch.device('cpu')
sam2_checkpoint = f'facebook/sam2-hiera-{variant.value}'
with torch.no_grad():
img_predictor = SAM2ImagePredictor.from_pretrained(sam2_checkpoint, device=device)
img_predictor.model.eval()
orig_hw = export_image_encoder(img_predictor, variant, output_dir, min_target, compute_units, precision)
if boxes is not None and points is None:
raise ValueError('Boxes are not supported yet')
else:
export_points_prompt_encoder(img_predictor, variant, points, labels, orig_hw, output_dir, min_target, compute_units, precision)
export_mask_decoder(img_predictor, variant, output_dir, min_target, compute_units, precision)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SAM2 -> CoreML CLI')
parser = parse_args(parser)
args = parser.parse_args()
(points, boxes, labels) = (None, None, None)
if args.points:
points = [tuple(p) for p in ast.literal_eval(args.points)]
if args.boxes:
boxes = [tuple(b) for b in ast.literal_eval(args.boxes)]
if args.labels:
labels = ast.literal_eval(args.labels)
if boxes and points:
raise ValueError('Cannot provide both points and boxes')
if points:
if not isinstance(points, list) or not all((isinstance(p, tuple) and len(p) == 2 for p in points)):
raise ValueError('Points must be a tuple of 2D points')
if labels:
if not isinstance(labels, list) or not all((isinstance(l, int) and l in [0, 1] for l in labels)):
raise ValueError('Labels must denote foreground (1) or background (0)')
if points:
if len(points) != len(labels):
raise ValueError('Number of points must match the number of labels')
if len(points) > 16:
raise ValueError('Number of points must be less than or equal to 16')
if boxes:
if not isinstance(boxes, list) or not all((isinstance(b, tuple) and len(b) == 4 for b in boxes)):
raise ValueError('Boxes must be a tuple of 4D bounding boxes')
export(args.output_dir, args.variant, points, boxes, labels, args.min_deployment_target, args.compute_units, args.precision)
# File: segment-anything-2-coreml-conversion/sam2/automatic_mask_generator.py
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import torch
from torchvision.ops.boxes import batched_nms, box_area
from sam2.modeling.sam2_base import SAM2Base
from sam2.sam2_image_predictor import SAM2ImagePredictor
from sam2.utils.amg import area_from_rle, batch_iterator, batched_mask_to_box, box_xyxy_to_xywh, build_all_layer_point_grids, calculate_stability_score, coco_encode_rle, generate_crop_boxes, is_box_near_crop_edge, mask_to_rle_pytorch, MaskData, remove_small_regions, rle_to_mask, uncrop_boxes_xyxy, uncrop_masks, uncrop_points
class SAM2AutomaticMaskGenerator:
def __init__(self, model: SAM2Base, points_per_side: Optional[int]=32, points_per_batch: int=64, pred_iou_thresh: float=0.8, stability_score_thresh: float=0.95, stability_score_offset: float=1.0, mask_threshold: float=0.0, box_nms_thresh: float=0.7, crop_n_layers: int=0, crop_nms_thresh: float=0.7, crop_overlap_ratio: float=512 / 1500, crop_n_points_downscale_factor: int=1, point_grids: Optional[List[np.ndarray]]=None, min_mask_region_area: int=0, output_mode: str='binary_mask', use_m2m: bool=False, multimask_output: bool=True, **kwargs) -> None:
assert (points_per_side is None) != (point_grids is None), 'Exactly one of points_per_side or point_grid must be provided.'
if points_per_side is not None:
self.point_grids = build_all_layer_point_grids(points_per_side, crop_n_layers, crop_n_points_downscale_factor)
elif point_grids is not None:
self.point_grids = point_grids
else:
raise ValueError("Can't have both points_per_side and point_grid be None.")
assert output_mode in ['binary_mask', 'uncompressed_rle', 'coco_rle'], f'Unknown output_mode {output_mode}.'
if output_mode == 'coco_rle':
try:
from pycocotools import mask as mask_utils
except ImportError as e:
print('Please install pycocotools')
raise e
self.predictor = SAM2ImagePredictor(model, max_hole_area=min_mask_region_area, max_sprinkle_area=min_mask_region_area)
self.points_per_batch = points_per_batch
self.pred_iou_thresh = pred_iou_thresh
self.stability_score_thresh = stability_score_thresh
self.stability_score_offset = stability_score_offset
self.mask_threshold = mask_threshold
self.box_nms_thresh = box_nms_thresh
self.crop_n_layers = crop_n_layers
self.crop_nms_thresh = crop_nms_thresh
self.crop_overlap_ratio = crop_overlap_ratio
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
self.min_mask_region_area = min_mask_region_area
self.output_mode = output_mode
self.use_m2m = use_m2m
self.multimask_output = multimask_output
@classmethod
def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2AutomaticMaskGenerator':
from sam2.build_sam import build_sam2_hf
sam_model = build_sam2_hf(model_id, **kwargs)
return cls(sam_model, **kwargs)
@torch.no_grad()
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
mask_data = self._generate_masks(image)
if self.output_mode == 'coco_rle':
mask_data['segmentations'] = [coco_encode_rle(rle) for rle in mask_data['rles']]
elif self.output_mode == 'binary_mask':
mask_data['segmentations'] = [rle_to_mask(rle) for rle in mask_data['rles']]
else:
mask_data['segmentations'] = mask_data['rles']
curr_anns = []
for idx in range(len(mask_data['segmentations'])):
ann = {'segmentation': mask_data['segmentations'][idx], 'area': area_from_rle(mask_data['rles'][idx]), 'bbox': box_xyxy_to_xywh(mask_data['boxes'][idx]).tolist(), 'predicted_iou': mask_data['iou_preds'][idx].item(), 'point_coords': [mask_data['points'][idx].tolist()], 'stability_score': mask_data['stability_score'][idx].item(), 'crop_box': box_xyxy_to_xywh(mask_data['crop_boxes'][idx]).tolist()}
curr_anns.append(ann)
return curr_anns
def _generate_masks(self, image: np.ndarray) -> MaskData:
orig_size = image.shape[:2]
(crop_boxes, layer_idxs) = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio)
data = MaskData()
for (crop_box, layer_idx) in zip(crop_boxes, layer_idxs):
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
data.cat(crop_data)
if len(crop_boxes) > 1:
scores = 1 / box_area(data['crop_boxes'])
scores = scores.to(data['boxes'].device)
keep_by_nms = batched_nms(data['boxes'].float(), scores, torch.zeros_like(data['boxes'][:, 0]), iou_threshold=self.crop_nms_thresh)
data.filter(keep_by_nms)
data.to_numpy()
return data
def _process_crop(self, image: np.ndarray, crop_box: List[int], crop_layer_idx: int, orig_size: Tuple[int, ...]) -> MaskData:
(x0, y0, x1, y1) = crop_box
cropped_im = image[y0:y1, x0:x1, :]
cropped_im_size = cropped_im.shape[:2]
self.predictor.set_image(cropped_im)
points_scale = np.array(cropped_im_size)[None, ::-1]
points_for_image = self.point_grids[crop_layer_idx] * points_scale
data = MaskData()
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size, normalize=True)
data.cat(batch_data)
del batch_data
self.predictor.reset_predictor()
keep_by_nms = batched_nms(data['boxes'].float(), data['iou_preds'], torch.zeros_like(data['boxes'][:, 0]), iou_threshold=self.box_nms_thresh)
data.filter(keep_by_nms)
data['boxes'] = uncrop_boxes_xyxy(data['boxes'], crop_box)
data['points'] = uncrop_points(data['points'], crop_box)
data['crop_boxes'] = torch.tensor([crop_box for _ in range(len(data['rles']))])
return data
def _process_batch(self, points: np.ndarray, im_size: Tuple[int, ...], crop_box: List[int], orig_size: Tuple[int, ...], normalize=False) -> MaskData:
(orig_h, orig_w) = orig_size
points = torch.as_tensor(points, dtype=torch.float32, device=self.predictor.device)
in_points = self.predictor._transforms.transform_coords(points, normalize=normalize, orig_hw=im_size)
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
(masks, iou_preds, low_res_masks) = self.predictor._predict(in_points[:, None, :], in_labels[:, None], multimask_output=self.multimask_output, return_logits=True)
data = MaskData(masks=masks.flatten(0, 1), iou_preds=iou_preds.flatten(0, 1), points=points.repeat_interleave(masks.shape[1], dim=0), low_res_masks=low_res_masks.flatten(0, 1))
del masks
if not self.use_m2m:
if self.pred_iou_thresh > 0.0:
keep_mask = data['iou_preds'] > self.pred_iou_thresh
data.filter(keep_mask)
data['stability_score'] = calculate_stability_score(data['masks'], self.mask_threshold, self.stability_score_offset)
if self.stability_score_thresh > 0.0:
keep_mask = data['stability_score'] >= self.stability_score_thresh
data.filter(keep_mask)
else:
in_points = self.predictor._transforms.transform_coords(data['points'], normalize=normalize, orig_hw=im_size)
labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
(masks, ious) = self.refine_with_m2m(in_points, labels, data['low_res_masks'], self.points_per_batch)
data['masks'] = masks.squeeze(1)
data['iou_preds'] = ious.squeeze(1)
if self.pred_iou_thresh > 0.0:
keep_mask = data['iou_preds'] > self.pred_iou_thresh
data.filter(keep_mask)
data['stability_score'] = calculate_stability_score(data['masks'], self.mask_threshold, self.stability_score_offset)
if self.stability_score_thresh > 0.0:
keep_mask = data['stability_score'] >= self.stability_score_thresh
data.filter(keep_mask)
data['masks'] = data['masks'] > self.mask_threshold
data['boxes'] = batched_mask_to_box(data['masks'])
keep_mask = ~is_box_near_crop_edge(data['boxes'], crop_box, [0, 0, orig_w, orig_h])
if not torch.all(keep_mask):
data.filter(keep_mask)
data['masks'] = uncrop_masks(data['masks'], crop_box, orig_h, orig_w)
data['rles'] = mask_to_rle_pytorch(data['masks'])
del data['masks']
return data
@staticmethod
def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData:
if len(mask_data['rles']) == 0:
return mask_data
new_masks = []
scores = []
for rle in mask_data['rles']:
mask = rle_to_mask(rle)
(mask, changed) = remove_small_regions(mask, min_area, mode='holes')
unchanged = not changed
(mask, changed) = remove_small_regions(mask, min_area, mode='islands')
unchanged = unchanged and (not changed)
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
scores.append(float(unchanged))
masks = torch.cat(new_masks, dim=0)
boxes = batched_mask_to_box(masks)
keep_by_nms = batched_nms(boxes.float(), torch.as_tensor(scores), torch.zeros_like(boxes[:, 0]), iou_threshold=nms_thresh)
for i_mask in keep_by_nms:
if scores[i_mask] == 0.0:
mask_torch = masks[i_mask].unsqueeze(0)
mask_data['rles'][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
mask_data['boxes'][i_mask] = boxes[i_mask]
mask_data.filter(keep_by_nms)
return mask_data
def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
new_masks = []
new_iou_preds = []
for (cur_points, cur_point_labels, low_res_mask) in batch_iterator(points_per_batch, points, point_labels, low_res_masks):
(best_masks, best_iou_preds, _) = self.predictor._predict(cur_points[:, None, :], cur_point_labels[:, None], mask_input=low_res_mask[:, None, :], multimask_output=False, return_logits=True)
new_masks.append(best_masks)
new_iou_preds.append(best_iou_preds)
masks = torch.cat(new_masks, dim=0)
return (masks, torch.cat(new_iou_preds, dim=0))
# File: segment-anything-2-coreml-conversion/sam2/build_sam.py
import logging
import torch
from hydra import compose
from hydra.utils import instantiate
from omegaconf import OmegaConf
def build_sam2(config_file, ckpt_path=None, device='cuda', mode='eval', hydra_overrides_extra=[], apply_postprocessing=True, **kwargs):
if apply_postprocessing:
hydra_overrides_extra = hydra_overrides_extra.copy()
hydra_overrides_extra += ['++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98']
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
OmegaConf.resolve(cfg)
model = instantiate(cfg.model, _recursive_=True)
_load_checkpoint(model, ckpt_path)
model = model.to(device)
if mode == 'eval':
model.eval()
return model
def build_sam2_video_predictor(config_file, ckpt_path=None, device='cuda', mode='eval', hydra_overrides_extra=[], apply_postprocessing=True, **kwargs):
hydra_overrides = ['++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor']
if apply_postprocessing:
hydra_overrides_extra = hydra_overrides_extra.copy()
hydra_overrides_extra += ['++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98', '++model.binarize_mask_from_pts_for_mem_enc=true', '++model.fill_hole_area=8']
hydra_overrides.extend(hydra_overrides_extra)
cfg = compose(config_name=config_file, overrides=hydra_overrides)
OmegaConf.resolve(cfg)
model = instantiate(cfg.model, _recursive_=True)
_load_checkpoint(model, ckpt_path)
model = model.to(device)
if mode == 'eval':
model.eval()
return model
def build_sam2_hf(model_id, **kwargs):
from huggingface_hub import hf_hub_download
model_id_to_filenames = {'facebook/sam2-hiera-tiny': ('sam2_hiera_t.yaml', 'sam2_hiera_tiny.pt'), 'facebook/sam2-hiera-small': ('sam2_hiera_s.yaml', 'sam2_hiera_small.pt'), 'facebook/sam2-hiera-base-plus': ('sam2_hiera_b+.yaml', 'sam2_hiera_base_plus.pt'), 'facebook/sam2-hiera-large': ('sam2_hiera_l.yaml', 'sam2_hiera_large.pt')}
(config_name, checkpoint_name) = model_id_to_filenames[model_id]
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
def build_sam2_video_predictor_hf(model_id, **kwargs):
from huggingface_hub import hf_hub_download
model_id_to_filenames = {'facebook/sam2-hiera-tiny': ('sam2_hiera_t.yaml', 'sam2_hiera_tiny.pt'), 'facebook/sam2-hiera-small': ('sam2_hiera_s.yaml', 'sam2_hiera_small.pt'), 'facebook/sam2-hiera-base-plus': ('sam2_hiera_b+.yaml', 'sam2_hiera_base_plus.pt'), 'facebook/sam2-hiera-large': ('sam2_hiera_l.yaml', 'sam2_hiera_large.pt')}
(config_name, checkpoint_name) = model_id_to_filenames[model_id]
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
return build_sam2_video_predictor(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
def _load_checkpoint(model, ckpt_path):
if ckpt_path is not None:
sd = torch.load(ckpt_path, map_location='cpu')['model']
(missing_keys, unexpected_keys) = model.load_state_dict(sd)
if missing_keys:
logging.error(missing_keys)
raise RuntimeError()
if unexpected_keys:
logging.error(unexpected_keys)
raise RuntimeError()
logging.info('Loaded checkpoint sucessfully')
# File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/hieradet.py
from functools import partial
from typing import List, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from sam2.modeling.backbones.utils import PatchEmbed, window_partition, window_unpartition
from sam2.modeling.sam2_utils import DropPath, MLP
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module=None) -> torch.Tensor:
if pool is None:
return x
x = x.permute(0, 3, 1, 2)
x = pool(x)
x = x.permute(0, 2, 3, 1)
if norm:
x = norm(x)
return x
class MultiScaleAttention(nn.Module):
def __init__(self, dim: int, dim_out: int, num_heads: int, q_pool: nn.Module=None):
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.num_heads = num_heads
self.q_pool = q_pool
self.qkv = nn.Linear(dim, dim_out * 3)
self.proj = nn.Linear(dim_out, dim_out)
def forward(self, x: torch.Tensor) -> torch.Tensor:
(B, H, W, _) = x.shape
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
(q, k, v) = torch.unbind(qkv, 2)
if self.q_pool:
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
(H, W) = q.shape[1:3]
q = q.reshape(B, H * W, self.num_heads, -1)
x = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2))
x = x.transpose(1, 2)
x = x.reshape(B, H, W, -1)
x = self.proj(x)
return x
class MultiScaleBlock(nn.Module):
def __init__(self, dim: int, dim_out: int, num_heads: int, mlp_ratio: float=4.0, drop_path: float=0.0, norm_layer: Union[nn.Module, str]='LayerNorm', q_stride: Tuple[int, int]=None, act_layer: nn.Module=nn.GELU, window_size: int=0):
super().__init__()
if isinstance(norm_layer, str):
norm_layer = partial(getattr(nn, norm_layer), eps=1e-06)
self.dim = dim
self.dim_out = dim_out
self.norm1 = norm_layer(dim)
self.window_size = window_size
(self.pool, self.q_stride) = (None, q_stride)
if self.q_stride:
self.pool = nn.MaxPool2d(kernel_size=q_stride, stride=q_stride, ceil_mode=False)
self.attn = MultiScaleAttention(dim, dim_out, num_heads=num_heads, q_pool=self.pool)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim_out)
self.mlp = MLP(dim_out, int(dim_out * mlp_ratio), dim_out, num_layers=2, activation=act_layer)
if dim != dim_out:
self.proj = nn.Linear(dim, dim_out)
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
if self.dim != self.dim_out:
shortcut = do_pool(self.proj(x), self.pool)
window_size = self.window_size
if window_size > 0:
(H, W) = (x.shape[1], x.shape[2])
(x, pad_hw) = window_partition(x, window_size)
x = self.attn(x)
if self.q_stride:
window_size = self.window_size // self.q_stride[0]
(H, W) = shortcut.shape[1:3]
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
pad_hw = (H + pad_h, W + pad_w)
if self.window_size > 0:
x = window_unpartition(x, window_size, pad_hw, (H, W))
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Hiera(nn.Module):
def __init__(self, embed_dim: int=96, num_heads: int=1, drop_path_rate: float=0.0, q_pool: int=3, q_stride: Tuple[int, int]=(2, 2), stages: Tuple[int, ...]=(2, 3, 16, 3), dim_mul: float=2.0, head_mul: float=2.0, window_pos_embed_bkg_spatial_size: Tuple[int, int]=(14, 14), window_spec: Tuple[int, ...]=(8, 4, 14, 7), global_att_blocks: Tuple[int, ...]=(12, 16, 20), return_interm_layers=True):
super().__init__()
assert len(stages) == len(window_spec)
self.window_spec = window_spec
depth = sum(stages)
self.q_stride = q_stride
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
assert 0 <= q_pool <= len(self.stage_ends[:-1])
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
self.return_interm_layers = return_interm_layers
self.patch_embed = PatchEmbed(embed_dim=embed_dim)
self.global_att_blocks = global_att_blocks
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size))
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
cur_stage = 1
self.blocks = nn.ModuleList()
for i in range(depth):
dim_out = embed_dim
window_size = self.window_spec[cur_stage - 1]
if self.global_att_blocks is not None:
window_size = 0 if i in self.global_att_blocks else window_size
if i - 1 in self.stage_ends:
dim_out = int(embed_dim * dim_mul)
num_heads = int(num_heads * head_mul)
cur_stage += 1
block = MultiScaleBlock(dim=embed_dim, dim_out=dim_out, num_heads=num_heads, drop_path=dpr[i], q_stride=self.q_stride if i in self.q_pool_blocks else None, window_size=window_size)
embed_dim = dim_out
self.blocks.append(block)
self.channel_list = [self.blocks[i].dim_out for i in self.stage_ends[::-1]] if return_interm_layers else [self.blocks[-1].dim_out]
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
(h, w) = hw
window_embed = self.pos_embed_window
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode='bicubic')
tiles = [x // y for (x, y) in zip(pos_embed.shape, window_embed.shape)]
pos_embed = pos_embed + window_embed.tile(tiles)
pos_embed = pos_embed.permute(0, 2, 3, 1)
return pos_embed
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
x = self.patch_embed(x)
x = x + self._get_pos_embed(x.shape[1:3])
outputs = []
for (i, blk) in enumerate(self.blocks):
x = blk(x)
if i == self.stage_ends[-1] or (i in self.stage_ends and self.return_interm_layers):
feats = x.permute(0, 3, 1, 2)
outputs.append(feats)
return outputs
# File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/image_encoder.py
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
class ImageEncoder(nn.Module):
def __init__(self, trunk: nn.Module, neck: nn.Module, scalp: int=0):
super().__init__()
self.trunk = trunk
self.neck = neck
self.scalp = scalp
assert self.trunk.channel_list == self.neck.backbone_channel_list, f'Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}'
def forward(self, sample: torch.Tensor):
(features, pos) = self.neck(self.trunk(sample))
if self.scalp > 0:
(features, pos) = (features[:-self.scalp], pos[:-self.scalp])
src = features[-1]
output = {'vision_features': src, 'vision_pos_enc': pos, 'backbone_fpn': features}
return output
class FpnNeck(nn.Module):
def __init__(self, position_encoding: nn.Module, d_model: int, backbone_channel_list: List[int], kernel_size: int=1, stride: int=1, padding: int=0, fpn_interp_model: str='bilinear', fuse_type: str='sum', fpn_top_down_levels: Optional[List[int]]=None):
super().__init__()
self.position_encoding = position_encoding
self.convs = nn.ModuleList()
self.backbone_channel_list = backbone_channel_list
for dim in backbone_channel_list:
current = nn.Sequential()
current.add_module('conv', nn.Conv2d(in_channels=dim, out_channels=d_model, kernel_size=kernel_size, stride=stride, padding=padding))
self.convs.append(current)
self.fpn_interp_model = fpn_interp_model
assert fuse_type in ['sum', 'avg']
self.fuse_type = fuse_type
if fpn_top_down_levels is None:
fpn_top_down_levels = range(len(self.convs))
self.fpn_top_down_levels = list(fpn_top_down_levels)
def forward(self, xs: List[torch.Tensor]):
out = [None] * len(self.convs)
pos = [None] * len(self.convs)
assert len(xs) == len(self.convs)
prev_features = None
n = len(self.convs) - 1
for i in range(n, -1, -1):
x = xs[i]
lateral_features = self.convs[n - i](x)
if i in self.fpn_top_down_levels and prev_features is not None:
top_down_features = F.interpolate(prev_features.to(dtype=torch.float32), scale_factor=2.0, mode=self.fpn_interp_model, align_corners=None if self.fpn_interp_model == 'nearest' else False, antialias=False)
prev_features = lateral_features + top_down_features
if self.fuse_type == 'avg':
prev_features /= 2
else:
prev_features = lateral_features
x_out = prev_features
out[i] = x_out
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
return (out, pos)
# File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/utils.py
""""""
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
def window_partition(x, window_size):
(B, H, W, C) = x.shape
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
(Hp, Wp) = (H + pad_h, W + pad_w)
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return (windows, (Hp, Wp))
def window_unpartition(windows, window_size, pad_hw, hw):
(Hp, Wp) = pad_hw
(H, W) = hw
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
if Hp > H or Wp > W:
x = x[:, :H, :W, :].contiguous()
return x
class PatchEmbed(nn.Module):
def __init__(self, kernel_size: Tuple[int, ...]=(7, 7), stride: Tuple[int, ...]=(4, 4), padding: Tuple[int, ...]=(3, 3), in_chans: int=3, embed_dim: int=768):
super().__init__()
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
x = x.permute(0, 2, 3, 1)
return x
# File: segment-anything-2-coreml-conversion/sam2/modeling/memory_attention.py
from typing import Optional
import torch
from torch import nn, Tensor
from sam2.modeling.sam.transformer import RoPEAttention
from sam2.modeling.sam2_utils import get_activation_fn, get_clones
class MemoryAttentionLayer(nn.Module):
def __init__(self, activation: str, cross_attention: nn.Module, d_model: int, dim_feedforward: int, dropout: float, pos_enc_at_attn: bool, pos_enc_at_cross_attn_keys: bool, pos_enc_at_cross_attn_queries: bool, self_attention: nn.Module):
super().__init__()
self.d_model = d_model
self.dim_feedforward = dim_feedforward
self.dropout_value = dropout
self.self_attn = self_attention
self.cross_attn_image = cross_attention
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation_str = activation
self.activation = get_activation_fn(activation)
self.pos_enc_at_attn = pos_enc_at_attn
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
def _forward_sa(self, tgt, query_pos):
tgt2 = self.norm1(tgt)
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
tgt2 = self.self_attn(q, k, v=tgt2)
tgt = tgt + self.dropout1(tgt2)
return tgt
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
kwds = {}
if num_k_exclude_rope > 0:
assert isinstance(self.cross_attn_image, RoPEAttention)
kwds = {'num_k_exclude_rope': num_k_exclude_rope}
tgt2 = self.norm2(tgt)
tgt2 = self.cross_attn_image(q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, v=memory, **kwds)
tgt = tgt + self.dropout2(tgt2)
return tgt
def forward(self, tgt, memory, pos: Optional[Tensor]=None, query_pos: Optional[Tensor]=None, num_k_exclude_rope: int=0) -> torch.Tensor:
tgt = self._forward_sa(tgt, query_pos)
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
class MemoryAttention(nn.Module):
def __init__(self, d_model: int, pos_enc_at_input: bool, layer: nn.Module, num_layers: int, batch_first: bool=True):
super().__init__()
self.d_model = d_model
self.layers = get_clones(layer, num_layers)
self.num_layers = num_layers
self.norm = nn.LayerNorm(d_model)
self.pos_enc_at_input = pos_enc_at_input
self.batch_first = batch_first
def forward(self, curr: torch.Tensor, memory: torch.Tensor, curr_pos: Optional[Tensor]=None, memory_pos: Optional[Tensor]=None, num_obj_ptr_tokens: int=0):
if isinstance(curr, list):
assert isinstance(curr_pos, list)
assert len(curr) == len(curr_pos) == 1
(curr, curr_pos) = (curr[0], curr_pos[0])
assert curr.shape[1] == memory.shape[1], 'Batch size must be the same for curr and memory'
output = curr
if self.pos_enc_at_input and curr_pos is not None:
output = output + 0.1 * curr_pos
if self.batch_first:
output = output.transpose(0, 1)
curr_pos = curr_pos.transpose(0, 1)
memory = memory.transpose(0, 1)
memory_pos = memory_pos.transpose(0, 1)
for layer in self.layers:
kwds = {}
if isinstance(layer.cross_attn_image, RoPEAttention):
kwds = {'num_k_exclude_rope': num_obj_ptr_tokens}
output = layer(tgt=output, memory=memory, pos=memory_pos, query_pos=curr_pos, **kwds)
normed_output = self.norm(output)
if self.batch_first:
normed_output = normed_output.transpose(0, 1)
curr_pos = curr_pos.transpose(0, 1)
return normed_output
# File: segment-anything-2-coreml-conversion/sam2/modeling/memory_encoder.py
import math
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d
class MaskDownSampler(nn.Module):
def __init__(self, embed_dim=256, kernel_size=4, stride=4, padding=0, total_stride=16, activation=nn.GELU):
super().__init__()
num_layers = int(math.log2(total_stride) // math.log2(stride))
assert stride ** num_layers == total_stride
self.encoder = nn.Sequential()
(mask_in_chans, mask_out_chans) = (1, 1)
for _ in range(num_layers):
mask_out_chans = mask_in_chans * stride ** 2
self.encoder.append(nn.Conv2d(mask_in_chans, mask_out_chans, kernel_size=kernel_size, stride=stride, padding=padding))
self.encoder.append(LayerNorm2d(mask_out_chans))
self.encoder.append(activation())
mask_in_chans = mask_out_chans
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
def forward(self, x):
return self.encoder(x)
class CXBlock(nn.Module):
def __init__(self, dim, kernel_size=7, padding=3, drop_path=0.0, layer_scale_init_value=1e-06, use_dwconv=True):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=padding, groups=dim if use_dwconv else 1)
self.norm = LayerNorm2d(dim, eps=1e-06)
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = self.norm(x)
x = x.permute(0, 2, 3, 1)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2)
x = input + self.drop_path(x)
return x
class Fuser(nn.Module):
def __init__(self, layer, num_layers, dim=None, input_projection=False):
super().__init__()
self.proj = nn.Identity()
self.layers = get_clones(layer, num_layers)
if input_projection:
assert dim is not None
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
def forward(self, x):
x = self.proj(x)
for layer in self.layers:
x = layer(x)
return x
class MemoryEncoder(nn.Module):
def __init__(self, out_dim, mask_downsampler, fuser, position_encoding, in_dim=256):
super().__init__()
self.mask_downsampler = mask_downsampler
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
self.fuser = fuser
self.position_encoding = position_encoding
self.out_proj = nn.Identity()
if out_dim != in_dim:
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
def forward(self, pix_feat: torch.Tensor, masks: torch.Tensor, skip_mask_sigmoid: bool=False) -> Tuple[torch.Tensor, torch.Tensor]:
if not skip_mask_sigmoid:
masks = F.sigmoid(masks)
masks = self.mask_downsampler(masks)
pix_feat = pix_feat.to(masks.device)
x = self.pix_feat_proj(pix_feat)
x = x + masks
x = self.fuser(x)
x = self.out_proj(x)
pos = self.position_encoding(x).to(x.dtype)
return {'vision_features': x, 'vision_pos_enc': [pos]}
# File: segment-anything-2-coreml-conversion/sam2/modeling/position_encoding.py
import math
from typing import Any, Optional, Tuple
import numpy as np
import torch
from torch import nn
class PositionEmbeddingSine(nn.Module):
def __init__(self, num_pos_feats, temperature: int=10000, normalize: bool=True, scale: Optional[float]=None):
super().__init__()
assert num_pos_feats % 2 == 0, 'Expecting even model width'
self.num_pos_feats = num_pos_feats // 2
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError('normalize should be True if scale is passed')
if scale is None:
scale = 2 * math.pi
self.scale = scale
self.cache = {}
def _encode_xy(self, x, y):
assert len(x) == len(y) and x.ndim == y.ndim == 1
x_embed = x * self.scale
y_embed = y * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, None] / dim_t
pos_y = y_embed[:, None] / dim_t
pos_x = torch.stack((pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2).flatten(1)
pos_y = torch.stack((pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2).flatten(1)
return (pos_x, pos_y)
@torch.no_grad()
def encode_boxes(self, x, y, w, h):
(pos_x, pos_y) = self._encode_xy(x, y)
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
return pos
encode = encode_boxes
@torch.no_grad()
def encode_points(self, x, y, labels):
((bx, nx), (by, ny), (bl, nl)) = (x.shape, y.shape, labels.shape)
assert bx == by and nx == ny and (bx == bl) and (nx == nl)
(pos_x, pos_y) = self._encode_xy(x.flatten(), y.flatten())
(pos_x, pos_y) = (pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1))
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
return pos
@torch.no_grad()
def forward(self, x: torch.Tensor):
cache_key = (x.shape[-2], x.shape[-1])
if cache_key in self.cache:
return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
y_embed = torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device).view(1, -1, 1).repeat(x.shape[0], 1, x.shape[-1])
x_embed = torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device).view(1, 1, -1).repeat(x.shape[0], x.shape[-2], 1)
if self.normalize:
eps = 1e-06
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
self.cache[cache_key] = pos[0]
return pos
class PositionEmbeddingRandom(nn.Module):
def __init__(self, num_pos_feats: int=64, scale: Optional[float]=None) -> None:
super().__init__()
if scale is None or scale <= 0.0:
scale = 1.0
self.register_buffer('positional_encoding_gaussian_matrix', scale * torch.randn((2, num_pos_feats)))
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
coords = 2 * coords - 1
coords = coords @ self.positional_encoding_gaussian_matrix
coords = 2 * np.pi * coords
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
(h, w) = size
device: Any = self.positional_encoding_gaussian_matrix.device
grid = torch.ones((h, w), device=device, dtype=torch.float32)
y_embed = grid.cumsum(dim=0) - 0.5
x_embed = grid.cumsum(dim=1) - 0.5
y_embed = y_embed / h
x_embed = x_embed / w
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
return pe.permute(2, 0, 1)
def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
coords = coords_input.clone()
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
return self._pe_encoding(coords.to(torch.float))
def init_t_xy(end_x: int, end_y: int):
t = torch.arange(end_x * end_y, dtype=torch.float32)
t_x = (t % end_x).float()
t_y = torch.div(t, end_x, rounding_mode='floor').float()
return (t_x, t_y)
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float=10000.0):
freqs_x = 1.0 / theta ** (torch.arange(0, dim, 4)[:dim // 4].float() / dim)
freqs_y = 1.0 / theta ** (torch.arange(0, dim, 4)[:dim // 4].float() / dim)
(t_x, t_y) = init_t_xy(end_x, end_y)
freqs_x = torch.outer(t_x, freqs_x)
freqs_y = torch.outer(t_y, freqs_y)
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
shape = [d if i >= ndim - 2 else 1 for (i, d) in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_enc(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, repeat_freqs_k: bool=False):
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) if xk.shape[-2] != 0 else None
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
if xk_ is None:
return (xq_out.type_as(xq).to(xq.device), xk)
if repeat_freqs_k:
r = xk_.shape[-2] // xq_.shape[-2]
if freqs_cis.is_cuda:
freqs_cis = freqs_cis.repeat(*[1] * (freqs_cis.ndim - 2), r, 1)
else:
freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return (xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device))
# File: segment-anything-2-coreml-conversion/sam2/modeling/sam/mask_decoder.py
from typing import List, Optional, Tuple, Type
import torch
from torch import nn
from sam2.modeling.sam2_utils import LayerNorm2d, MLP
class MaskDecoder(nn.Module):
def __init__(self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int=3, activation: Type[nn.Module]=nn.GELU, iou_head_depth: int=3, iou_head_hidden_dim: int=256, use_high_res_features: bool=False, iou_prediction_use_sigmoid=False, dynamic_multimask_via_stability=False, dynamic_multimask_stability_delta=0.05, dynamic_multimask_stability_thresh=0.98, pred_obj_scores: bool=False, pred_obj_scores_mlp: bool=False, use_multimask_token_for_obj_ptr: bool=False) -> None:
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
self.pred_obj_scores = pred_obj_scores
if self.pred_obj_scores:
self.obj_score_token = nn.Embedding(1, transformer_dim)
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
self.output_upscaling = nn.Sequential(nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), activation())
self.use_high_res_features = use_high_res_features
if use_high_res_features:
self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1)
self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1)
self.output_hypernetworks_mlps = nn.ModuleList([MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)])
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth, sigmoid_output=iou_prediction_use_sigmoid)
if self.pred_obj_scores:
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
if pred_obj_scores_mlp:
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
def forward(self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]]=None) -> Tuple[torch.Tensor, torch.Tensor]:
(masks, iou_pred, mask_tokens_out, object_score_logits) = self.predict_masks(image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, repeat_image=repeat_image, high_res_features=high_res_features)
if multimask_output:
masks = masks[:, 1:, :, :]
iou_pred = iou_pred[:, 1:]
elif self.dynamic_multimask_via_stability and (not self.training):
(masks, iou_pred) = self._dynamic_multimask_via_stability(masks, iou_pred)
else:
masks = masks[:, 0:1, :, :]
iou_pred = iou_pred[:, 0:1]
if multimask_output and self.use_multimask_token_for_obj_ptr:
sam_tokens_out = mask_tokens_out[:, 1:]
else:
sam_tokens_out = mask_tokens_out[:, 0:1]
return (masks, iou_pred, sam_tokens_out, object_score_logits)
def predict_masks(self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]]=None) -> Tuple[torch.Tensor, torch.Tensor]:
s = 0
if self.pred_obj_scores:
output_tokens = torch.cat([self.obj_score_token.weight, self.iou_token.weight, self.mask_tokens.weight], dim=0)
s = 1
else:
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
if repeat_image:
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
else:
assert image_embeddings.shape[0] == tokens.shape[0]
src = image_embeddings
src = src + dense_prompt_embeddings
assert image_pe.size(0) == 1, 'image_pe should have size 1 in batch dim (from `get_dense_pe()`)'
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
(b, c, h, w) = src.shape
(hs, src) = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, s, :]
mask_tokens_out = hs[:, s + 1:s + 1 + self.num_mask_tokens, :]
src = src.transpose(1, 2).view(b, c, h, w)
if not self.use_high_res_features:
upscaled_embedding = self.output_upscaling(src)
else:
(dc1, ln1, act1, dc2, act2) = self.output_upscaling
(feat_s0, feat_s1) = high_res_features
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
hyper_in_list: List[torch.Tensor] = []
for i in range(self.num_mask_tokens):
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1)
(b, c, h, w) = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
iou_pred = self.iou_prediction_head(iou_token_out)
if self.pred_obj_scores:
assert s == 1
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
else:
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
return (masks, iou_pred, mask_tokens_out, object_score_logits)
def _get_stability_scores(self, mask_logits):
mask_logits = mask_logits.flatten(-2)
stability_delta = self.dynamic_multimask_stability_delta
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
return stability_scores
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
multimask_logits = all_mask_logits[:, 1:, :, :]
multimask_iou_scores = all_iou_scores[:, 1:]
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
batch_inds = torch.arange(multimask_iou_scores.size(0), device=all_iou_scores.device)
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
best_multimask_logits = best_multimask_logits.unsqueeze(1)
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
singlemask_logits = all_mask_logits[:, 0:1, :, :]
singlemask_iou_scores = all_iou_scores[:, 0:1]
stability_scores = self._get_stability_scores(singlemask_logits)
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
mask_logits_out = torch.where(is_stable[..., None, None].expand_as(singlemask_logits), singlemask_logits, best_multimask_logits)
iou_scores_out = torch.where(is_stable.expand_as(singlemask_iou_scores), singlemask_iou_scores, best_multimask_iou_scores)
return (mask_logits_out, iou_scores_out)
# File: segment-anything-2-coreml-conversion/sam2/modeling/sam/prompt_encoder.py
from typing import Optional, Tuple, Type
import torch
from torch import nn
from sam2.modeling.position_encoding import PositionEmbeddingRandom
from sam2.modeling.sam2_utils import LayerNorm2d
class PromptEncoder(nn.Module):
def __init__(self, embed_dim: int, image_embedding_size: Tuple[int, int], input_image_size: Tuple[int, int], mask_in_chans: int, activation: Type[nn.Module]=nn.GELU) -> None:
super().__init__()
self.embed_dim = embed_dim
self.input_image_size = input_image_size
self.image_embedding_size = image_embedding_size
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
self.num_point_embeddings: int = 4
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
self.point_embeddings = nn.ModuleList(point_embeddings)
self.not_a_point_embed = nn.Embedding(1, embed_dim)
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
self.mask_downscaling = nn.Sequential(nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans // 4), activation(), nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans), activation(), nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1))
self.no_mask_embed = nn.Embedding(1, embed_dim)
def get_dense_pe(self) -> torch.Tensor:
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
points = points + 0.5
if pad:
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
points = torch.cat([points, padding_point], dim=1)
labels = torch.cat([labels, padding_label], dim=1)
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
mask_not_a_point = (labels == -1).float().unsqueeze(-1)
mask_label_0 = (labels == 0).float().unsqueeze(-1)
mask_label_1 = (labels == 1).float().unsqueeze(-1)
mask_label_2 = (labels == 2).float().unsqueeze(-1)
mask_label_3 = (labels == 3).float().unsqueeze(-1)
point_embedding = point_embedding * (1 - mask_not_a_point) + self.not_a_point_embed.weight * mask_not_a_point + self.point_embeddings[0].weight * mask_label_0 + self.point_embeddings[1].weight * mask_label_1 + self.point_embeddings[2].weight * mask_label_2 + self.point_embeddings[3].weight * mask_label_3
return point_embedding
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
boxes = boxes + 0.5
coords = boxes.reshape(-1, 2, 2)
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
return corner_embedding
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
mask_embedding = self.mask_downscaling(masks)
return mask_embedding
def _get_batch_size(self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor]) -> int:
if points is not None:
return points[0].shape[0]
elif boxes is not None:
return boxes.shape[0]
elif masks is not None:
return masks.shape[0]
else:
return 1
def _get_device(self) -> torch.device:
return self.point_embeddings[0].weight.device
def forward(self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
bs = self._get_batch_size(points, boxes, masks)
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
if points is not None:
(coords, labels) = points
point_embeddings = self._embed_points(coords, labels, pad=boxes is None)
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
if boxes is not None:
box_embeddings = self._embed_boxes(boxes)
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
if masks is not None:
dense_embeddings = self._embed_masks(masks)
else:
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(bs, -1, self.image_embedding_size[0], self.image_embedding_size[1])
return (sparse_embeddings, dense_embeddings)
def points_only(self, points: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
(coords, labels) = points
sparse_embeddings = self._embed_points(coords, labels, pad=True)
bs = points[0].shape[0]
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(bs, -1, self.image_embedding_size[0], self.image_embedding_size[1])
return (sparse_embeddings, dense_embeddings)
# File: segment-anything-2-coreml-conversion/sam2/modeling/sam/transformer.py
import contextlib
import math
import warnings
from functools import partial
from typing import Tuple, Type
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
from sam2.modeling.sam2_utils import MLP
from sam2.utils.misc import get_sdpa_settings
warnings.simplefilter(action='ignore', category=FutureWarning)
(OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON) = get_sdpa_settings()
ALLOW_ALL_KERNELS = False
def sdp_kernel_context(dropout_p):
if ALLOW_ALL_KERNELS:
return contextlib.nullcontext()
return torch.backends.cuda.sdp_kernel(enable_flash=USE_FLASH_ATTN, enable_math=OLD_GPU and dropout_p > 0.0 or MATH_KERNEL_ON, enable_mem_efficient=OLD_GPU)
class TwoWayTransformer(nn.Module):
def __init__(self, depth: int, embedding_dim: int, num_heads: int, mlp_dim: int, activation: Type[nn.Module]=nn.ReLU, attention_downsample_rate: int=2) -> None:
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(TwoWayAttentionBlock(embedding_dim=embedding_dim, num_heads=num_heads, mlp_dim=mlp_dim, activation=activation, attention_downsample_rate=attention_downsample_rate, skip_first_layer_pe=i == 0))
self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(self, image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor) -> Tuple[Tensor, Tensor]:
(bs, c, h, w) = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
queries = point_embedding
keys = image_embedding
for layer in self.layers:
(queries, keys) = layer(queries=queries, keys=keys, query_pe=point_embedding, key_pe=image_pe)
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return (queries, keys)
class TwoWayAttentionBlock(nn.Module):
def __init__(self, embedding_dim: int, num_heads: int, mlp_dim: int=2048, activation: Type[nn.Module]=nn.ReLU, attention_downsample_rate: int=2, skip_first_layer_pe: bool=False) -> None:
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLP(embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.skip_first_layer_pe = skip_first_layer_pe
def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return (queries, keys)
class Attention(nn.Module):
def __init__(self, embedding_dim: int, num_heads: int, downsample_rate: int=1, dropout: float=0.0, kv_in_dim: int=None) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, 'num_heads must divide embedding_dim.'
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
self.dropout_p = dropout
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
(b, n, c) = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2)
def _recombine_heads(self, x: Tensor) -> Tensor:
(b, n_heads, n_tokens, c_per_head) = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
dropout_p = self.dropout_p if self.training else 0.0
try:
with sdp_kernel_context(dropout_p):
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
except Exception as e:
warnings.warn(f'Flash Attention kernel failed due to: {e}\nFalling back to all available kernels for scaled_dot_product_attention (which may have a slower speed).', category=UserWarning, stacklevel=2)
global ALLOW_ALL_KERNELS
ALLOW_ALL_KERNELS = True
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
out = self._recombine_heads(out)
out = self.out_proj(out)
return out
class RoPEAttention(Attention):
def __init__(self, *args, rope_theta=10000.0, rope_k_repeat=False, feat_sizes=(32, 32), **kwargs):
super().__init__(*args, **kwargs)
self.compute_cis = partial(compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta)
freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
self.freqs_cis = freqs_cis
self.rope_k_repeat = rope_k_repeat
def forward(self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int=0) -> Tensor:
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
w = h = math.sqrt(q.shape[-2])
self.freqs_cis = self.freqs_cis.to(q.device)
if self.freqs_cis.shape[0] != q.shape[-2]:
self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
if q.shape[-2] != k.shape[-2]:
assert self.rope_k_repeat
num_k_rope = k.size(-2) - num_k_exclude_rope
(q, k[:, :, :num_k_rope]) = apply_rotary_enc(q, k[:, :, :num_k_rope], freqs_cis=self.freqs_cis, repeat_freqs_k=self.rope_k_repeat)
dropout_p = self.dropout_p if self.training else 0.0
try:
with sdp_kernel_context(dropout_p):
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
except Exception as e:
warnings.warn(f'Flash Attention kernel failed due to: {e}\nFalling back to all available kernels for scaled_dot_product_attention (which may have a slower speed).', category=UserWarning, stacklevel=2)
global ALLOW_ALL_KERNELS
ALLOW_ALL_KERNELS = True
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
out = self._recombine_heads(out)
out = self.out_proj(out)
return out
# File: segment-anything-2-coreml-conversion/sam2/modeling/sam2_base.py
import torch
import torch.distributed
import torch.nn.functional as F
from torch.nn.init import trunc_normal_
from sam2.modeling.sam.mask_decoder import MaskDecoder
from sam2.modeling.sam.prompt_encoder import PromptEncoder
from sam2.modeling.sam.transformer import TwoWayTransformer
from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames
NO_OBJ_SCORE = -1024.0
class SAM2Base(torch.nn.Module):
def __init__(self, image_encoder, memory_attention, memory_encoder, num_maskmem=7, image_size=512, backbone_stride=16, sigmoid_scale_for_mem_enc=1.0, sigmoid_bias_for_mem_enc=0.0, binarize_mask_from_pts_for_mem_enc=False, use_mask_input_as_output_without_sam=False, max_cond_frames_in_attn=-1, directly_add_no_mem_embed=False, use_high_res_features_in_sam=False, multimask_output_in_sam=False, multimask_min_pt_num=1, multimask_max_pt_num=1, multimask_output_for_tracking=False, use_multimask_token_for_obj_ptr: bool=False, iou_prediction_use_sigmoid=False, memory_temporal_stride_for_eval=1, add_all_frames_to_correct_as_cond=False, non_overlap_masks_for_mem_enc=False, use_obj_ptrs_in_encoder=False, max_obj_ptrs_in_encoder=16, add_tpos_enc_to_obj_ptrs=True, proj_tpos_enc_in_obj_ptrs=False, only_obj_ptrs_in_the_past_for_eval=False, pred_obj_scores: bool=False, pred_obj_scores_mlp: bool=False, fixed_no_obj_ptr: bool=False, soft_no_obj_ptr: bool=False, use_mlp_for_obj_ptr_proj: bool=False, sam_mask_decoder_extra_args=None, compile_image_encoder: bool=False):
super().__init__()
self.image_encoder = image_encoder
self.use_high_res_features_in_sam = use_high_res_features_in_sam
self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
if use_obj_ptrs_in_encoder:
self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
if proj_tpos_enc_in_obj_ptrs:
assert add_tpos_enc_to_obj_ptrs
self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
self.memory_attention = memory_attention
self.hidden_dim = memory_attention.d_model
self.memory_encoder = memory_encoder
self.mem_dim = self.hidden_dim
if hasattr(self.memory_encoder, 'out_proj') and hasattr(self.memory_encoder.out_proj, 'weight'):
self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
self.num_maskmem = num_maskmem
self.maskmem_tpos_enc = torch.nn.Parameter(torch.zeros(num_maskmem, 1, 1, self.mem_dim))
trunc_normal_(self.maskmem_tpos_enc, std=0.02)
self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
trunc_normal_(self.no_mem_embed, std=0.02)
trunc_normal_(self.no_mem_pos_enc, std=0.02)
self.directly_add_no_mem_embed = directly_add_no_mem_embed
self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
self.multimask_output_in_sam = multimask_output_in_sam
self.multimask_min_pt_num = multimask_min_pt_num
self.multimask_max_pt_num = multimask_max_pt_num
self.multimask_output_for_tracking = multimask_output_for_tracking
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
self.image_size = image_size
self.backbone_stride = backbone_stride
self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
self.pred_obj_scores = pred_obj_scores
self.pred_obj_scores_mlp = pred_obj_scores_mlp
self.fixed_no_obj_ptr = fixed_no_obj_ptr
self.soft_no_obj_ptr = soft_no_obj_ptr
if self.fixed_no_obj_ptr:
assert self.pred_obj_scores
assert self.use_obj_ptrs_in_encoder
if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
trunc_normal_(self.no_obj_ptr, std=0.02)
self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
self._build_sam_heads()
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
self.max_cond_frames_in_attn = max_cond_frames_in_attn
if compile_image_encoder:
print('Image encoder compilation is enabled. First forward pass will be slow.')
self.image_encoder.forward = torch.compile(self.image_encoder.forward, mode='max-autotune', fullgraph=True, dynamic=False)
@property
def device(self):
return next(self.parameters()).device
def forward(self, *args, **kwargs):
raise NotImplementedError('Please use the corresponding methods in SAM2VideoPredictor for inference.See notebooks/video_predictor_example.ipynb for an example.')
def _build_sam_heads(self):
self.sam_prompt_embed_dim = self.hidden_dim
self.sam_image_embedding_size = self.image_size // self.backbone_stride
self.sam_prompt_encoder = PromptEncoder(embed_dim=self.sam_prompt_embed_dim, image_embedding_size=(self.sam_image_embedding_size, self.sam_image_embedding_size), input_image_size=(self.image_size, self.image_size), mask_in_chans=16)
self.sam_mask_decoder = MaskDecoder(num_multimask_outputs=3, transformer=TwoWayTransformer(depth=2, embedding_dim=self.sam_prompt_embed_dim, mlp_dim=2048, num_heads=8), transformer_dim=self.sam_prompt_embed_dim, iou_head_depth=3, iou_head_hidden_dim=256, use_high_res_features=self.use_high_res_features_in_sam, iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, pred_obj_scores=self.pred_obj_scores, pred_obj_scores_mlp=self.pred_obj_scores_mlp, use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, **self.sam_mask_decoder_extra_args or {})
if self.use_obj_ptrs_in_encoder:
self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
if self.use_mlp_for_obj_ptr_proj:
self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3)
else:
self.obj_ptr_proj = torch.nn.Identity()
if self.proj_tpos_enc_in_obj_ptrs:
self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
else:
self.obj_ptr_tpos_proj = torch.nn.Identity()
def _forward_sam_heads(self, backbone_features, point_inputs=None, mask_inputs=None, high_res_features=None, multimask_output=False):
B = backbone_features.size(0)
device = backbone_features.device
assert backbone_features.size(1) == self.sam_prompt_embed_dim
assert backbone_features.size(2) == self.sam_image_embedding_size
assert backbone_features.size(3) == self.sam_image_embedding_size
if point_inputs is not None:
sam_point_coords = point_inputs['point_coords']
sam_point_labels = point_inputs['point_labels']
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
else:
sam_point_coords = torch.zeros(B, 1, 2, device=device)
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
if mask_inputs is not None:
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
sam_mask_prompt = F.interpolate(mask_inputs.float(), size=self.sam_prompt_encoder.mask_input_size, align_corners=False, mode='bilinear', antialias=True)
else:
sam_mask_prompt = mask_inputs
else:
sam_mask_prompt = None
(sparse_embeddings, dense_embeddings) = self.sam_prompt_encoder(points=(sam_point_coords, sam_point_labels), boxes=None, masks=sam_mask_prompt)
(low_res_multimasks, ious, sam_output_tokens, object_score_logits) = self.sam_mask_decoder(image_embeddings=backbone_features, image_pe=self.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, repeat_image=False, high_res_features=high_res_features)
if self.pred_obj_scores:
is_obj_appearing = object_score_logits > 0
low_res_multimasks = torch.where(is_obj_appearing[:, None, None], low_res_multimasks, NO_OBJ_SCORE)
low_res_multimasks = low_res_multimasks.float()
high_res_multimasks = F.interpolate(low_res_multimasks, size=(self.image_size, self.image_size), mode='bilinear', align_corners=False)
sam_output_token = sam_output_tokens[:, 0]
if multimask_output:
best_iou_inds = torch.argmax(ious, dim=-1)
batch_inds = torch.arange(B, device=device)
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
if sam_output_tokens.size(1) > 1:
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
else:
(low_res_masks, high_res_masks) = (low_res_multimasks, high_res_multimasks)
obj_ptr = self.obj_ptr_proj(sam_output_token)
if self.pred_obj_scores:
if self.soft_no_obj_ptr:
assert not self.teacher_force_obj_scores_for_mem
lambda_is_obj_appearing = object_score_logits.sigmoid()
else:
lambda_is_obj_appearing = is_obj_appearing.float()
if self.fixed_no_obj_ptr:
obj_ptr = lambda_is_obj_appearing * obj_ptr
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
return (low_res_multimasks, high_res_multimasks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits)
def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
(out_scale, out_bias) = (20.0, -10.0)
mask_inputs_float = mask_inputs.float()
high_res_masks = mask_inputs_float * out_scale + out_bias
low_res_masks = F.interpolate(high_res_masks, size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), align_corners=False, mode='bilinear', antialias=True)
ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
if not self.use_obj_ptrs_in_encoder:
obj_ptr = torch.zeros(mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device)
else:
(_, _, _, _, _, obj_ptr, _) = self._forward_sam_heads(backbone_features=backbone_features, mask_inputs=self.mask_downsample(mask_inputs_float), high_res_features=high_res_features)
is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
is_obj_appearing = is_obj_appearing[..., None]
lambda_is_obj_appearing = is_obj_appearing.float()
object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
if self.pred_obj_scores:
if self.fixed_no_obj_ptr:
obj_ptr = lambda_is_obj_appearing * obj_ptr
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
return (low_res_masks, high_res_masks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits)
def forward_image(self, img_batch: torch.Tensor):
backbone_out = self.image_encoder(img_batch)
if self.use_high_res_features_in_sam:
backbone_out['backbone_fpn'][0] = self.sam_mask_decoder.conv_s0(backbone_out['backbone_fpn'][0])
backbone_out['backbone_fpn'][1] = self.sam_mask_decoder.conv_s1(backbone_out['backbone_fpn'][1])
return backbone_out
def _prepare_backbone_features(self, backbone_out):
backbone_out = backbone_out.copy()
assert len(backbone_out['backbone_fpn']) == len(backbone_out['vision_pos_enc'])
assert len(backbone_out['backbone_fpn']) >= self.num_feature_levels
feature_maps = backbone_out['backbone_fpn'][-self.num_feature_levels:]
vision_pos_embeds = backbone_out['vision_pos_enc'][-self.num_feature_levels:]
feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
return (backbone_out, vision_feats, vision_pos_embeds, feat_sizes)
def _prepare_memory_conditioned_features(self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, output_dict, num_frames, track_in_reverse=False):
B = current_vision_feats[-1].size(1)
C = self.hidden_dim
(H, W) = feat_sizes[-1]
device = current_vision_feats[-1].device
if self.num_maskmem == 0:
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
return pix_feat
num_obj_ptr_tokens = 0
if not is_init_cond_frame:
(to_cat_memory, to_cat_memory_pos_embed) = ([], [])
assert len(output_dict['cond_frame_outputs']) > 0
cond_outputs = output_dict['cond_frame_outputs']
(selected_cond_outputs, unselected_cond_outputs) = select_closest_cond_frames(frame_idx, cond_outputs, self.max_cond_frames_in_attn)
t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
r = self.memory_temporal_stride_for_eval
for t_pos in range(1, self.num_maskmem):
t_rel = self.num_maskmem - t_pos
if t_rel == 1:
if not track_in_reverse:
prev_frame_idx = frame_idx - t_rel
else:
prev_frame_idx = frame_idx + t_rel
elif not track_in_reverse:
prev_frame_idx = (frame_idx - 2) // r * r
prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
else:
prev_frame_idx = -(-(frame_idx + 2) // r) * r
prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
out = output_dict['non_cond_frame_outputs'].get(prev_frame_idx, None)
if out is None:
out = unselected_cond_outputs.get(prev_frame_idx, None)
t_pos_and_prevs.append((t_pos, out))
for (t_pos, prev) in t_pos_and_prevs:
if prev is None:
continue
feats = prev['maskmem_features'].to(device, non_blocking=True)
to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
maskmem_enc = prev['maskmem_pos_enc'][-1].to(device)
maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
maskmem_enc = maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
to_cat_memory_pos_embed.append(maskmem_enc)
if self.use_obj_ptrs_in_encoder:
max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
ptr_cond_outputs = {t: out for (t, out) in selected_cond_outputs.items() if (t >= frame_idx if track_in_reverse else t <= frame_idx)}
else:
ptr_cond_outputs = selected_cond_outputs
pos_and_ptrs = [(abs(frame_idx - t), out['obj_ptr']) for (t, out) in ptr_cond_outputs.items()]
for t_diff in range(1, max_obj_ptrs_in_encoder):
t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
if t < 0 or (num_frames is not None and t >= num_frames):
break
out = output_dict['non_cond_frame_outputs'].get(t, unselected_cond_outputs.get(t, None))
if out is not None:
pos_and_ptrs.append((t_diff, out['obj_ptr']))
if len(pos_and_ptrs) > 0:
(pos_list, ptrs_list) = zip(*pos_and_ptrs)
obj_ptrs = torch.stack(ptrs_list, dim=0)
if self.add_tpos_enc_to_obj_ptrs:
t_diff_max = max_obj_ptrs_in_encoder - 1
tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
obj_pos = torch.tensor(pos_list, device=device)
obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
obj_pos = self.obj_ptr_tpos_proj(obj_pos)
obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
else:
obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
if self.mem_dim < C:
obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim)
obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
to_cat_memory.append(obj_ptrs)
to_cat_memory_pos_embed.append(obj_pos)
num_obj_ptr_tokens = obj_ptrs.shape[0]
else:
num_obj_ptr_tokens = 0
else:
if self.directly_add_no_mem_embed:
pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
return pix_feat_with_mem
to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
memory = torch.cat(to_cat_memory, dim=0)
memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
pix_feat_with_mem = self.memory_attention(curr=current_vision_feats, curr_pos=current_vision_pos_embeds, memory=memory, memory_pos=memory_pos_embed, num_obj_ptr_tokens=num_obj_ptr_tokens)
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
return pix_feat_with_mem
def _encode_new_memory(self, current_vision_feats, feat_sizes, pred_masks_high_res, is_mask_from_pts):
B = current_vision_feats[-1].size(1)
C = self.hidden_dim
(H, W) = feat_sizes[-1]
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
if self.non_overlap_masks_for_mem_enc and (not self.training):
pred_masks_high_res = self._apply_non_overlapping_constraints(pred_masks_high_res)
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
if binarize and (not self.training):
mask_for_mem = (pred_masks_high_res > 0).float()
else:
mask_for_mem = torch.sigmoid(pred_masks_high_res)
if self.sigmoid_scale_for_mem_enc != 1.0:
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
if self.sigmoid_bias_for_mem_enc != 0.0:
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
maskmem_out = self.memory_encoder(pix_feat, mask_for_mem, skip_mask_sigmoid=True)
maskmem_features = maskmem_out['vision_features']
maskmem_pos_enc = maskmem_out['vision_pos_enc']
return (maskmem_features, maskmem_pos_enc)
def track_step(self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, point_inputs, mask_inputs, output_dict, num_frames, track_in_reverse=False, run_mem_encoder=True, prev_sam_mask_logits=None):
current_out = {'point_inputs': point_inputs, 'mask_inputs': mask_inputs}
if len(current_vision_feats) > 1:
high_res_features = [x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) for (x, s) in zip(current_vision_feats[:-1], feat_sizes[:-1])]
else:
high_res_features = None
if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
pix_feat = current_vision_feats[-1].permute(1, 2, 0)
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
sam_outputs = self._use_mask_as_output(pix_feat, high_res_features, mask_inputs)
else:
pix_feat_with_mem = self._prepare_memory_conditioned_features(frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats[-1:], current_vision_pos_embeds=current_vision_pos_embeds[-1:], feat_sizes=feat_sizes[-1:], output_dict=output_dict, num_frames=num_frames, track_in_reverse=track_in_reverse)
if prev_sam_mask_logits is not None:
assert point_inputs is not None and mask_inputs is None
mask_inputs = prev_sam_mask_logits
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
sam_outputs = self._forward_sam_heads(backbone_features=pix_feat_with_mem, point_inputs=point_inputs, mask_inputs=mask_inputs, high_res_features=high_res_features, multimask_output=multimask_output)
(_, _, _, low_res_masks, high_res_masks, obj_ptr, _) = sam_outputs
current_out['pred_masks'] = low_res_masks
current_out['pred_masks_high_res'] = high_res_masks
current_out['obj_ptr'] = obj_ptr
if run_mem_encoder and self.num_maskmem > 0:
high_res_masks_for_mem_enc = high_res_masks
(maskmem_features, maskmem_pos_enc) = self._encode_new_memory(current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks_for_mem_enc, is_mask_from_pts=point_inputs is not None)
current_out['maskmem_features'] = maskmem_features
current_out['maskmem_pos_enc'] = maskmem_pos_enc
else:
current_out['maskmem_features'] = None
current_out['maskmem_pos_enc'] = None
return current_out
def _use_multimask(self, is_init_cond_frame, point_inputs):
num_pts = 0 if point_inputs is None else point_inputs['point_labels'].size(1)
multimask_output = self.multimask_output_in_sam and (is_init_cond_frame or self.multimask_output_for_tracking) and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
return multimask_output
def _apply_non_overlapping_constraints(self, pred_masks):
batch_size = pred_masks.size(0)
if batch_size == 1:
return pred_masks
device = pred_masks.device
max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
keep = max_obj_inds == batch_obj_inds
pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
return pred_masks
# File: segment-anything-2-coreml-conversion/sam2/modeling/sam2_utils.py
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
selected_outputs = cond_frame_outputs
unselected_outputs = {}
else:
assert max_cond_frame_num >= 2, 'we should allow using 2+ conditioning frames'
selected_outputs = {}
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
if idx_before is not None:
selected_outputs[idx_before] = cond_frame_outputs[idx_before]
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
if idx_after is not None:
selected_outputs[idx_after] = cond_frame_outputs[idx_after]
num_remain = max_cond_frame_num - len(selected_outputs)
inds_remain = sorted((t for t in cond_frame_outputs if t not in selected_outputs), key=lambda x: abs(x - frame_idx))[:num_remain]
selected_outputs.update(((t, cond_frame_outputs[t]) for t in inds_remain))
unselected_outputs = {t: v for (t, v) in cond_frame_outputs.items() if t not in selected_outputs}
return (selected_outputs, unselected_outputs)
def get_1d_sine_pe(pos_inds, dim, temperature=10000):
pe_dim = dim // 2
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
pos_embed = pos_inds.unsqueeze(-1) / dim_t
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
return pos_embed
def get_activation_fn(activation):
if activation == 'relu':
return F.relu
if activation == 'gelu':
return F.gelu
if activation == 'glu':
return F.glu
raise RuntimeError(f'activation should be relu/gelu, not {activation}.')
def get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class DropPath(nn.Module):
def __init__(self, drop_prob=0.0, scale_by_keep=True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
if self.drop_prob == 0.0 or not self.training:
return x
keep_prob = 1 - self.drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and self.scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class MLP(nn.Module):
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, activation: nn.Module=nn.ReLU, sigmoid_output: bool=False) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList((nn.Linear(n, k) for (n, k) in zip([input_dim] + h, h + [output_dim])))
self.sigmoid_output = sigmoid_output
self.act = activation()
def forward(self, x):
for (i, layer) in enumerate(self.layers):
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float=1e-06) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
# File: segment-anything-2-coreml-conversion/sam2/sam2_image_predictor.py
import os
import logging
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from PIL.Image import Image
from sam2.modeling.sam2_base import SAM2Base
from sam2.utils.transforms import SAM2Transforms
class SAM2ImagePredictor:
def __init__(self, sam_model: SAM2Base, mask_threshold=0.0, max_hole_area=0.0, max_sprinkle_area=0.0, **kwargs) -> None:
super().__init__()
self.model = sam_model
self._transforms = SAM2Transforms(resolution=self.model.image_size, mask_threshold=mask_threshold, max_hole_area=max_hole_area, max_sprinkle_area=max_sprinkle_area)
self._is_image_set = False
self._features = None
self._orig_hw = None
self._is_batch = False
self.mask_threshold = mask_threshold
self._bb_feat_sizes = [(256, 256), (128, 128), (64, 64)]
@classmethod
def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2ImagePredictor':
from sam2.build_sam import build_sam2_hf
sam_model = build_sam2_hf(model_id, **kwargs)
return cls(sam_model, **kwargs)
@torch.no_grad()
def set_image(self, image: Union[np.ndarray, Image]) -> None:
self.reset_predictor()
if isinstance(image, np.ndarray):
logging.info('For numpy array image, we assume (HxWxC) format')
self._orig_hw = [image.shape[:2]]
elif isinstance(image, Image):
(w, h) = image.size
self._orig_hw = [(h, w)]
else:
raise NotImplementedError('Image format not supported')
input_image = self._transforms(image)
input_image = input_image[None, ...].to(self.device)
assert len(input_image.shape) == 4 and input_image.shape[1] == 3, f'input_image must be of size 1x3xHxW, got {input_image.shape}'
logging.info('Computing image embeddings for the provided image...')
backbone_out = self.model.forward_image(input_image)
(_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out)
if self.model.directly_add_no_mem_embed:
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
feats = [feat.permute(1, 2, 0).view(1, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1]
self._features = {'image_embed': feats[-1], 'high_res_feats': feats[:-1]}
self._is_image_set = True
serialize_ground = os.environ.get('SERIALIZE_GROUND', False)
if serialize_ground:
image_embed = self._features['image_embed'].cpu().numpy()
high_res_feats = self._features['high_res_feats']
feats_s0 = high_res_feats[0].cpu().numpy()
feats_s1 = high_res_feats[1].cpu().numpy()
np.save('image_embed.npy', image_embed)
np.save('feats_s0.npy', feats_s0)
np.save('feats_s1.npy', feats_s1)
logging.info('Image embeddings computed.')
@torch.no_grad()
def encode_image_raw(self, prepared_image: torch.Tensor):
self.model.eval()
with torch.no_grad():
for (_, param) in self.model.named_parameters():
if param.requires_grad:
param.requires_grad = False
backbone_out = self.model.forward_image(prepared_image)
(_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out)
if self.model.directly_add_no_mem_embed:
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
feats = [feat.permute(1, 2, 0).view(1, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1]
image_embed = feats[-1]
high_res_feats = feats[:-1]
assert len(high_res_feats) == 2
(feats_s0, feats_s1) = (high_res_feats[0], high_res_feats[1])
return (image_embed, feats_s0, feats_s1)
@torch.no_grad()
def encode_points_raw(self, unnorm_coords: torch.Tensor, labels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
concat_points = (unnorm_coords, labels)
with torch.no_grad():
for (_, param) in self.model.named_parameters():
if param.requires_grad:
param.requires_grad = False
(sparse_embeddings, dense_embeddings) = self.model.sam_prompt_encoder.points_only(points=concat_points)
return (sparse_embeddings, dense_embeddings)
@torch.no_grad()
def decode_masks_raw(self, image_embeddings: torch.Tensor, sparse_embedding: torch.Tensor, dense_embedding: torch.Tensor, high_res_features: List[torch.Tensor], multimask_output: bool=True, batched_mode: bool=False):
with torch.no_grad():
for (_, param) in self.model.sam_mask_decoder.named_parameters():
if param.requires_grad:
param.requires_grad = False
(low_res_masks, iou_scores, _, _) = self.model.sam_mask_decoder(image_embeddings=image_embeddings, image_pe=self.model.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embedding, dense_prompt_embeddings=dense_embedding, multimask_output=multimask_output, repeat_image=batched_mode, high_res_features=high_res_features)
return (low_res_masks, iou_scores)
@torch.no_grad()
def set_image_batch(self, image_list: List[Union[np.ndarray]]) -> None:
self.reset_predictor()
assert isinstance(image_list, list)
self._orig_hw = []
for image in image_list:
assert isinstance(image, np.ndarray), 'Images are expected to be an np.ndarray in RGB format, and of shape HWC'
self._orig_hw.append(image.shape[:2])
img_batch = self._transforms.forward_batch(image_list)
img_batch = img_batch.to(self.device)
batch_size = img_batch.shape[0]
assert len(img_batch.shape) == 4 and img_batch.shape[1] == 3, f'img_batch must be of size Bx3xHxW, got {img_batch.shape}'
logging.info('Computing image embeddings for the provided images...')
backbone_out = self.model.forward_image(img_batch)
(_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out)
if self.model.directly_add_no_mem_embed:
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
feats = [feat.permute(1, 2, 0).view(batch_size, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1]
self._features = {'image_embed': feats[-1], 'high_res_feats': feats[:-1]}
self._is_image_set = True
self._is_batch = True
logging.info('Image embeddings computed.')
def predict_batch(self, point_coords_batch: List[np.ndarray]=None, point_labels_batch: List[np.ndarray]=None, box_batch: List[np.ndarray]=None, mask_input_batch: List[np.ndarray]=None, multimask_output: bool=True, return_logits: bool=False, normalize_coords=True) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
assert self._is_batch, 'This function should only be used when in batched mode'
if not self._is_image_set:
raise RuntimeError('An image must be set with .set_image_batch(...) before mask prediction.')
num_images = len(self._features['image_embed'])
all_masks = []
all_ious = []
all_low_res_masks = []
for img_idx in range(num_images):
point_coords = point_coords_batch[img_idx] if point_coords_batch is not None else None
point_labels = point_labels_batch[img_idx] if point_labels_batch is not None else None
box = box_batch[img_idx] if box_batch is not None else None
mask_input = mask_input_batch[img_idx] if mask_input_batch is not None else None
(mask_input, unnorm_coords, labels, unnorm_box) = self._prep_prompts(point_coords, point_labels, box, mask_input, normalize_coords, img_idx=img_idx)
(masks, iou_predictions, low_res_masks) = self._predict(unnorm_coords, labels, unnorm_box, mask_input, multimask_output, return_logits=return_logits, img_idx=img_idx)
masks_np = masks.squeeze(0).float().detach().cpu().numpy()
iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
all_masks.append(masks_np)
all_ious.append(iou_predictions_np)
all_low_res_masks.append(low_res_masks_np)
return (all_masks, all_ious, all_low_res_masks)
def predict(self, point_coords: Optional[np.ndarray]=None, point_labels: Optional[np.ndarray]=None, box: Optional[np.ndarray]=None, mask_input: Optional[np.ndarray]=None, multimask_output: bool=True, return_logits: bool=False, normalize_coords=True) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
if not self._is_image_set:
raise RuntimeError('An image must be set with .set_image(...) before mask prediction.')
(mask_input, unnorm_coords, labels, unnorm_box) = self._prep_prompts(point_coords, point_labels, box, mask_input, normalize_coords)
(masks, iou_predictions, low_res_masks) = self._predict(unnorm_coords, labels, unnorm_box, mask_input, multimask_output, return_logits=return_logits)
masks_np = masks.squeeze(0).float().detach().cpu().numpy()
iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
return (masks_np, iou_predictions_np, low_res_masks_np)
def _prep_prompts(self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1):
(unnorm_coords, labels, unnorm_box, mask_input) = (None, None, None, None)
if point_coords is not None:
assert point_labels is not None, 'point_labels must be supplied if point_coords is supplied.'
point_coords = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
unnorm_coords = self._transforms.transform_coords(point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx])
labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
if len(unnorm_coords.shape) == 2:
(unnorm_coords, labels) = (unnorm_coords[None, ...], labels[None, ...])
if box is not None:
box = torch.as_tensor(box, dtype=torch.float, device=self.device)
unnorm_box = self._transforms.transform_boxes(box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx])
if mask_logits is not None:
mask_input = torch.as_tensor(mask_logits, dtype=torch.float, device=self.device)
if len(mask_input.shape) == 3:
mask_input = mask_input[None, :, :, :]
return (mask_input, unnorm_coords, labels, unnorm_box)
@torch.no_grad()
def _predict(self, point_coords: Optional[torch.Tensor], point_labels: Optional[torch.Tensor], boxes: Optional[torch.Tensor]=None, mask_input: Optional[torch.Tensor]=None, multimask_output: bool=True, return_logits: bool=False, img_idx: int=-1) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
if not self._is_image_set:
raise RuntimeError('An image must be set with .set_image(...) before mask prediction.')
if point_coords is not None:
concat_points = (point_coords, point_labels)
else:
concat_points = None
if boxes is not None:
box_coords = boxes.reshape(-1, 2, 2)
box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device)
box_labels = box_labels.repeat(boxes.size(0), 1)
if concat_points is not None:
concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
concat_points = (concat_coords, concat_labels)
else:
concat_points = (box_coords, box_labels)
(sparse_embeddings, dense_embeddings) = self.model.sam_prompt_encoder(points=concat_points, boxes=None, masks=mask_input)
batched_mode = concat_points is not None and concat_points[0].shape[0] > 1
high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in self._features['high_res_feats']]
(low_res_masks, iou_predictions, _, _) = self.model.sam_mask_decoder(image_embeddings=self._features['image_embed'][img_idx].unsqueeze(0), image_pe=self.model.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, repeat_image=batched_mode, high_res_features=high_res_features)
if os.environ.get('SERIALIZE_GROUND', False):
low_res_masks_np = low_res_masks.cpu().numpy()
np.save('low_res_masks.npy', low_res_masks_np)
masks = self._transforms.postprocess_masks(low_res_masks, self._orig_hw[img_idx])
low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
if not return_logits:
masks = masks > self.mask_threshold
return (masks, iou_predictions, low_res_masks)
def get_image_embedding(self) -> torch.Tensor:
if not self._is_image_set:
raise RuntimeError('An image must be set with .set_image(...) to generate an embedding.')
assert self._features is not None, 'Features must exist if an image has been set.'
return self._features['image_embed']
@property
def device(self) -> torch.device:
return self.model.device
def reset_predictor(self) -> None:
self._is_image_set = False
self._features = None
self._orig_hw = None
self._is_batch = False
# File: segment-anything-2-coreml-conversion/sam2/sam2_video_predictor.py
import warnings
from collections import OrderedDict
import torch
from tqdm import tqdm
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
class SAM2VideoPredictor(SAM2Base):
def __init__(self, fill_hole_area=0, non_overlap_masks=False, clear_non_cond_mem_around_input=False, clear_non_cond_mem_for_multi_obj=False, **kwargs):
super().__init__(**kwargs)
self.fill_hole_area = fill_hole_area
self.non_overlap_masks = non_overlap_masks
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
@torch.inference_mode()
def init_state(self, video_path, offload_video_to_cpu=False, offload_state_to_cpu=False, async_loading_frames=False):
compute_device = self.device
(images, video_height, video_width) = load_video_frames(video_path=video_path, image_size=self.image_size, offload_video_to_cpu=offload_video_to_cpu, async_loading_frames=async_loading_frames, compute_device=compute_device)
inference_state = {}
inference_state['images'] = images
inference_state['num_frames'] = len(images)
inference_state['offload_video_to_cpu'] = offload_video_to_cpu
inference_state['offload_state_to_cpu'] = offload_state_to_cpu
inference_state['video_height'] = video_height
inference_state['video_width'] = video_width
inference_state['device'] = compute_device
if offload_state_to_cpu:
inference_state['storage_device'] = torch.device('cpu')
else:
inference_state['storage_device'] = compute_device
inference_state['point_inputs_per_obj'] = {}
inference_state['mask_inputs_per_obj'] = {}
inference_state['cached_features'] = {}
inference_state['constants'] = {}
inference_state['obj_id_to_idx'] = OrderedDict()
inference_state['obj_idx_to_id'] = OrderedDict()
inference_state['obj_ids'] = []
inference_state['output_dict'] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}}
inference_state['output_dict_per_obj'] = {}
inference_state['temp_output_dict_per_obj'] = {}
inference_state['consolidated_frame_inds'] = {'cond_frame_outputs': set(), 'non_cond_frame_outputs': set()}
inference_state['tracking_has_started'] = False
inference_state['frames_already_tracked'] = {}
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
return inference_state
@classmethod
def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2VideoPredictor':
from sam2.build_sam import build_sam2_video_predictor_hf
sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
return sam_model
def _obj_id_to_idx(self, inference_state, obj_id):
obj_idx = inference_state['obj_id_to_idx'].get(obj_id, None)
if obj_idx is not None:
return obj_idx
allow_new_object = not inference_state['tracking_has_started']
if allow_new_object:
obj_idx = len(inference_state['obj_id_to_idx'])
inference_state['obj_id_to_idx'][obj_id] = obj_idx
inference_state['obj_idx_to_id'][obj_idx] = obj_id
inference_state['obj_ids'] = list(inference_state['obj_id_to_idx'])
inference_state['point_inputs_per_obj'][obj_idx] = {}
inference_state['mask_inputs_per_obj'][obj_idx] = {}
inference_state['output_dict_per_obj'][obj_idx] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}}
inference_state['temp_output_dict_per_obj'][obj_idx] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}}
return obj_idx
else:
raise RuntimeError(f"Cannot add new object id {obj_id} after tracking starts. All existing object ids: {inference_state['obj_ids']}. Please call 'reset_state' to restart from scratch.")
def _obj_idx_to_id(self, inference_state, obj_idx):
return inference_state['obj_idx_to_id'][obj_idx]
def _get_obj_num(self, inference_state):
return len(inference_state['obj_idx_to_id'])
@torch.inference_mode()
def add_new_points_or_box(self, inference_state, frame_idx, obj_id, points=None, labels=None, clear_old_points=True, normalize_coords=True, box=None):
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
point_inputs_per_frame = inference_state['point_inputs_per_obj'][obj_idx]
mask_inputs_per_frame = inference_state['mask_inputs_per_obj'][obj_idx]
if (points is not None) != (labels is not None):
raise ValueError('points and labels must be provided together')
if points is None and box is None:
raise ValueError('at least one of points or box must be provided as input')
if points is None:
points = torch.zeros(0, 2, dtype=torch.float32)
elif not isinstance(points, torch.Tensor):
points = torch.tensor(points, dtype=torch.float32)
if labels is None:
labels = torch.zeros(0, dtype=torch.int32)
elif not isinstance(labels, torch.Tensor):
labels = torch.tensor(labels, dtype=torch.int32)
if points.dim() == 2:
points = points.unsqueeze(0)
if labels.dim() == 1:
labels = labels.unsqueeze(0)
if box is not None:
if not clear_old_points:
raise ValueError('cannot add box without clearing old points, since box prompt must be provided before any point prompt (please use clear_old_points=True instead)')
if inference_state['tracking_has_started']:
warnings.warn("You are adding a box after tracking starts. SAM 2 may not always be able to incorporate a box prompt for *refinement*. If you intend to use box prompt as an *initial* input before tracking, please call 'reset_state' on the inference state to restart from scratch.", category=UserWarning, stacklevel=2)
if not isinstance(box, torch.Tensor):
box = torch.tensor(box, dtype=torch.float32, device=points.device)
box_coords = box.reshape(1, 2, 2)
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
box_labels = box_labels.reshape(1, 2)
points = torch.cat([box_coords, points], dim=1)
labels = torch.cat([box_labels, labels], dim=1)
if normalize_coords:
video_H = inference_state['video_height']
video_W = inference_state['video_width']
points = points / torch.tensor([video_W, video_H]).to(points.device)
points = points * self.image_size
points = points.to(inference_state['device'])
labels = labels.to(inference_state['device'])
if not clear_old_points:
point_inputs = point_inputs_per_frame.get(frame_idx, None)
else:
point_inputs = None
point_inputs = concat_points(point_inputs, points, labels)
point_inputs_per_frame[frame_idx] = point_inputs
mask_inputs_per_frame.pop(frame_idx, None)
is_init_cond_frame = frame_idx not in inference_state['frames_already_tracked']
if is_init_cond_frame:
reverse = False
else:
reverse = inference_state['frames_already_tracked'][frame_idx]['reverse']
obj_output_dict = inference_state['output_dict_per_obj'][obj_idx]
obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx]
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs'
prev_sam_mask_logits = None
prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
if prev_out is None:
prev_out = obj_output_dict['cond_frame_outputs'].get(frame_idx)
if prev_out is None:
prev_out = obj_output_dict['non_cond_frame_outputs'].get(frame_idx)
if prev_out is not None and prev_out['pred_masks'] is not None:
device = inference_state['device']
prev_sam_mask_logits = prev_out['pred_masks'].to(device, non_blocking=True)
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
(current_out, _) = self._run_single_frame_inference(inference_state=inference_state, output_dict=obj_output_dict, frame_idx=frame_idx, batch_size=1, is_init_cond_frame=is_init_cond_frame, point_inputs=point_inputs, mask_inputs=None, reverse=reverse, run_mem_encoder=False, prev_sam_mask_logits=prev_sam_mask_logits)
obj_temp_output_dict[storage_key][frame_idx] = current_out
obj_ids = inference_state['obj_ids']
consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True)
(_, video_res_masks) = self._get_orig_video_res_output(inference_state, consolidated_out['pred_masks_video_res'])
return (frame_idx, obj_ids, video_res_masks)
def add_new_points(self, *args, **kwargs):
return self.add_new_points_or_box(*args, **kwargs)
@torch.inference_mode()
def add_new_mask(self, inference_state, frame_idx, obj_id, mask):
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
point_inputs_per_frame = inference_state['point_inputs_per_obj'][obj_idx]
mask_inputs_per_frame = inference_state['mask_inputs_per_obj'][obj_idx]
if not isinstance(mask, torch.Tensor):
mask = torch.tensor(mask, dtype=torch.bool)
assert mask.dim() == 2
(mask_H, mask_W) = mask.shape
mask_inputs_orig = mask[None, None]
mask_inputs_orig = mask_inputs_orig.float().to(inference_state['device'])
if mask_H != self.image_size or mask_W != self.image_size:
mask_inputs = torch.nn.functional.interpolate(mask_inputs_orig, size=(self.image_size, self.image_size), align_corners=False, mode='bilinear', antialias=True)
mask_inputs = (mask_inputs >= 0.5).float()
else:
mask_inputs = mask_inputs_orig
mask_inputs_per_frame[frame_idx] = mask_inputs
point_inputs_per_frame.pop(frame_idx, None)
is_init_cond_frame = frame_idx not in inference_state['frames_already_tracked']
if is_init_cond_frame:
reverse = False
else:
reverse = inference_state['frames_already_tracked'][frame_idx]['reverse']
obj_output_dict = inference_state['output_dict_per_obj'][obj_idx]
obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx]
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs'
(current_out, _) = self._run_single_frame_inference(inference_state=inference_state, output_dict=obj_output_dict, frame_idx=frame_idx, batch_size=1, is_init_cond_frame=is_init_cond_frame, point_inputs=None, mask_inputs=mask_inputs, reverse=reverse, run_mem_encoder=False)
obj_temp_output_dict[storage_key][frame_idx] = current_out
obj_ids = inference_state['obj_ids']
consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True)
(_, video_res_masks) = self._get_orig_video_res_output(inference_state, consolidated_out['pred_masks_video_res'])
return (frame_idx, obj_ids, video_res_masks)
def _get_orig_video_res_output(self, inference_state, any_res_masks):
device = inference_state['device']
video_H = inference_state['video_height']
video_W = inference_state['video_width']
any_res_masks = any_res_masks.to(device, non_blocking=True)
if any_res_masks.shape[-2:] == (video_H, video_W):
video_res_masks = any_res_masks
else:
video_res_masks = torch.nn.functional.interpolate(any_res_masks, size=(video_H, video_W), mode='bilinear', align_corners=False)
if self.non_overlap_masks:
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
return (any_res_masks, video_res_masks)
def _consolidate_temp_output_across_obj(self, inference_state, frame_idx, is_cond, run_mem_encoder, consolidate_at_video_res=False):
batch_size = self._get_obj_num(inference_state)
storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs'
if consolidate_at_video_res:
assert not run_mem_encoder, 'memory encoder cannot run at video resolution'
consolidated_H = inference_state['video_height']
consolidated_W = inference_state['video_width']
consolidated_mask_key = 'pred_masks_video_res'
else:
consolidated_H = consolidated_W = self.image_size // 4
consolidated_mask_key = 'pred_masks'
consolidated_out = {'maskmem_features': None, 'maskmem_pos_enc': None, consolidated_mask_key: torch.full(size=(batch_size, 1, consolidated_H, consolidated_W), fill_value=NO_OBJ_SCORE, dtype=torch.float32, device=inference_state['storage_device']), 'obj_ptr': torch.full(size=(batch_size, self.hidden_dim), fill_value=NO_OBJ_SCORE, dtype=torch.float32, device=inference_state['device'])}
empty_mask_ptr = None
for obj_idx in range(batch_size):
obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx]
obj_output_dict = inference_state['output_dict_per_obj'][obj_idx]
out = obj_temp_output_dict[storage_key].get(frame_idx, None)
if out is None:
out = obj_output_dict['cond_frame_outputs'].get(frame_idx, None)
if out is None:
out = obj_output_dict['non_cond_frame_outputs'].get(frame_idx, None)
if out is None:
if run_mem_encoder:
if empty_mask_ptr is None:
empty_mask_ptr = self._get_empty_mask_ptr(inference_state, frame_idx)
consolidated_out['obj_ptr'][obj_idx:obj_idx + 1] = empty_mask_ptr
continue
obj_mask = out['pred_masks']
consolidated_pred_masks = consolidated_out[consolidated_mask_key]
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
consolidated_pred_masks[obj_idx:obj_idx + 1] = obj_mask
else:
resized_obj_mask = torch.nn.functional.interpolate(obj_mask, size=consolidated_pred_masks.shape[-2:], mode='bilinear', align_corners=False)
consolidated_pred_masks[obj_idx:obj_idx + 1] = resized_obj_mask
consolidated_out['obj_ptr'][obj_idx:obj_idx + 1] = out['obj_ptr']
if run_mem_encoder:
device = inference_state['device']
high_res_masks = torch.nn.functional.interpolate(consolidated_out['pred_masks'].to(device, non_blocking=True), size=(self.image_size, self.image_size), mode='bilinear', align_corners=False)
if self.non_overlap_masks_for_mem_enc:
high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
(maskmem_features, maskmem_pos_enc) = self._run_memory_encoder(inference_state=inference_state, frame_idx=frame_idx, batch_size=batch_size, high_res_masks=high_res_masks, is_mask_from_pts=True)
consolidated_out['maskmem_features'] = maskmem_features
consolidated_out['maskmem_pos_enc'] = maskmem_pos_enc
return consolidated_out
def _get_empty_mask_ptr(self, inference_state, frame_idx):
batch_size = 1
mask_inputs = torch.zeros((batch_size, 1, self.image_size, self.image_size), dtype=torch.float32, device=inference_state['device'])
(_, _, current_vision_feats, current_vision_pos_embeds, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size)
current_out = self.track_step(frame_idx=frame_idx, is_init_cond_frame=True, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=None, mask_inputs=mask_inputs, output_dict={}, num_frames=inference_state['num_frames'], track_in_reverse=False, run_mem_encoder=False, prev_sam_mask_logits=None)
return current_out['obj_ptr']
@torch.inference_mode()
def propagate_in_video_preflight(self, inference_state):
inference_state['tracking_has_started'] = True
batch_size = self._get_obj_num(inference_state)
temp_output_dict_per_obj = inference_state['temp_output_dict_per_obj']
output_dict = inference_state['output_dict']
consolidated_frame_inds = inference_state['consolidated_frame_inds']
for is_cond in [False, True]:
storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs'
temp_frame_inds = set()
for obj_temp_output_dict in temp_output_dict_per_obj.values():
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
consolidated_frame_inds[storage_key].update(temp_frame_inds)
for frame_idx in temp_frame_inds:
consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True)
output_dict[storage_key][frame_idx] = consolidated_out
self._add_output_per_object(inference_state, frame_idx, consolidated_out, storage_key)
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1)
if clear_non_cond_mem:
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
for obj_temp_output_dict in temp_output_dict_per_obj.values():
obj_temp_output_dict[storage_key].clear()
for frame_idx in output_dict['cond_frame_outputs']:
output_dict['non_cond_frame_outputs'].pop(frame_idx, None)
for obj_output_dict in inference_state['output_dict_per_obj'].values():
for frame_idx in obj_output_dict['cond_frame_outputs']:
obj_output_dict['non_cond_frame_outputs'].pop(frame_idx, None)
for frame_idx in consolidated_frame_inds['cond_frame_outputs']:
assert frame_idx in output_dict['cond_frame_outputs']
consolidated_frame_inds['non_cond_frame_outputs'].discard(frame_idx)
all_consolidated_frame_inds = consolidated_frame_inds['cond_frame_outputs'] | consolidated_frame_inds['non_cond_frame_outputs']
input_frames_inds = set()
for point_inputs_per_frame in inference_state['point_inputs_per_obj'].values():
input_frames_inds.update(point_inputs_per_frame.keys())
for mask_inputs_per_frame in inference_state['mask_inputs_per_obj'].values():
input_frames_inds.update(mask_inputs_per_frame.keys())
assert all_consolidated_frame_inds == input_frames_inds
@torch.inference_mode()
def propagate_in_video(self, inference_state, start_frame_idx=None, max_frame_num_to_track=None, reverse=False):
self.propagate_in_video_preflight(inference_state)
output_dict = inference_state['output_dict']
consolidated_frame_inds = inference_state['consolidated_frame_inds']
obj_ids = inference_state['obj_ids']
num_frames = inference_state['num_frames']
batch_size = self._get_obj_num(inference_state)
if len(output_dict['cond_frame_outputs']) == 0:
raise RuntimeError('No points are provided; please add points first')
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1)
if start_frame_idx is None:
start_frame_idx = min(output_dict['cond_frame_outputs'])
if max_frame_num_to_track is None:
max_frame_num_to_track = num_frames
if reverse:
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
if start_frame_idx > 0:
processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
else:
processing_order = []
else:
end_frame_idx = min(start_frame_idx + max_frame_num_to_track, num_frames - 1)
processing_order = range(start_frame_idx, end_frame_idx + 1)
for frame_idx in tqdm(processing_order, desc='propagate in video'):
if frame_idx in consolidated_frame_inds['cond_frame_outputs']:
storage_key = 'cond_frame_outputs'
current_out = output_dict[storage_key][frame_idx]
pred_masks = current_out['pred_masks']
if clear_non_cond_mem:
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
elif frame_idx in consolidated_frame_inds['non_cond_frame_outputs']:
storage_key = 'non_cond_frame_outputs'
current_out = output_dict[storage_key][frame_idx]
pred_masks = current_out['pred_masks']
else:
storage_key = 'non_cond_frame_outputs'
(current_out, pred_masks) = self._run_single_frame_inference(inference_state=inference_state, output_dict=output_dict, frame_idx=frame_idx, batch_size=batch_size, is_init_cond_frame=False, point_inputs=None, mask_inputs=None, reverse=reverse, run_mem_encoder=True)
output_dict[storage_key][frame_idx] = current_out
self._add_output_per_object(inference_state, frame_idx, current_out, storage_key)
inference_state['frames_already_tracked'][frame_idx] = {'reverse': reverse}
(_, video_res_masks) = self._get_orig_video_res_output(inference_state, pred_masks)
yield (frame_idx, obj_ids, video_res_masks)
def _add_output_per_object(self, inference_state, frame_idx, current_out, storage_key):
maskmem_features = current_out['maskmem_features']
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
maskmem_pos_enc = current_out['maskmem_pos_enc']
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
output_dict_per_obj = inference_state['output_dict_per_obj']
for (obj_idx, obj_output_dict) in output_dict_per_obj.items():
obj_slice = slice(obj_idx, obj_idx + 1)
obj_out = {'maskmem_features': None, 'maskmem_pos_enc': None, 'pred_masks': current_out['pred_masks'][obj_slice], 'obj_ptr': current_out['obj_ptr'][obj_slice]}
if maskmem_features is not None:
obj_out['maskmem_features'] = maskmem_features[obj_slice]
if maskmem_pos_enc is not None:
obj_out['maskmem_pos_enc'] = [x[obj_slice] for x in maskmem_pos_enc]
obj_output_dict[storage_key][frame_idx] = obj_out
@torch.inference_mode()
def reset_state(self, inference_state):
self._reset_tracking_results(inference_state)
inference_state['obj_id_to_idx'].clear()
inference_state['obj_idx_to_id'].clear()
inference_state['obj_ids'].clear()
inference_state['point_inputs_per_obj'].clear()
inference_state['mask_inputs_per_obj'].clear()
inference_state['output_dict_per_obj'].clear()
inference_state['temp_output_dict_per_obj'].clear()
def _reset_tracking_results(self, inference_state):
for v in inference_state['point_inputs_per_obj'].values():
v.clear()
for v in inference_state['mask_inputs_per_obj'].values():
v.clear()
for v in inference_state['output_dict_per_obj'].values():
v['cond_frame_outputs'].clear()
v['non_cond_frame_outputs'].clear()
for v in inference_state['temp_output_dict_per_obj'].values():
v['cond_frame_outputs'].clear()
v['non_cond_frame_outputs'].clear()
inference_state['output_dict']['cond_frame_outputs'].clear()
inference_state['output_dict']['non_cond_frame_outputs'].clear()
inference_state['consolidated_frame_inds']['cond_frame_outputs'].clear()
inference_state['consolidated_frame_inds']['non_cond_frame_outputs'].clear()
inference_state['tracking_has_started'] = False
inference_state['frames_already_tracked'].clear()
def _get_image_feature(self, inference_state, frame_idx, batch_size):
(image, backbone_out) = inference_state['cached_features'].get(frame_idx, (None, None))
if backbone_out is None:
device = inference_state['device']
image = inference_state['images'][frame_idx].to(device).float().unsqueeze(0)
backbone_out = self.forward_image(image)
inference_state['cached_features'] = {frame_idx: (image, backbone_out)}
expanded_image = image.expand(batch_size, -1, -1, -1)
expanded_backbone_out = {'backbone_fpn': backbone_out['backbone_fpn'].copy(), 'vision_pos_enc': backbone_out['vision_pos_enc'].copy()}
for (i, feat) in enumerate(expanded_backbone_out['backbone_fpn']):
expanded_backbone_out['backbone_fpn'][i] = feat.expand(batch_size, -1, -1, -1)
for (i, pos) in enumerate(expanded_backbone_out['vision_pos_enc']):
pos = pos.expand(batch_size, -1, -1, -1)
expanded_backbone_out['vision_pos_enc'][i] = pos
features = self._prepare_backbone_features(expanded_backbone_out)
features = (expanded_image,) + features
return features
def _run_single_frame_inference(self, inference_state, output_dict, frame_idx, batch_size, is_init_cond_frame, point_inputs, mask_inputs, reverse, run_mem_encoder, prev_sam_mask_logits=None):
(_, _, current_vision_feats, current_vision_pos_embeds, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size)
assert point_inputs is None or mask_inputs is None
current_out = self.track_step(frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=point_inputs, mask_inputs=mask_inputs, output_dict=output_dict, num_frames=inference_state['num_frames'], track_in_reverse=reverse, run_mem_encoder=run_mem_encoder, prev_sam_mask_logits=prev_sam_mask_logits)
storage_device = inference_state['storage_device']
maskmem_features = current_out['maskmem_features']
if maskmem_features is not None:
maskmem_features = maskmem_features.to(torch.bfloat16)
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
pred_masks_gpu = current_out['pred_masks']
if self.fill_hole_area > 0:
pred_masks_gpu = fill_holes_in_mask_scores(pred_masks_gpu, self.fill_hole_area)
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
obj_ptr = current_out['obj_ptr']
compact_current_out = {'maskmem_features': maskmem_features, 'maskmem_pos_enc': maskmem_pos_enc, 'pred_masks': pred_masks, 'obj_ptr': obj_ptr}
return (compact_current_out, pred_masks_gpu)
def _run_memory_encoder(self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts):
(_, _, current_vision_feats, _, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size)
(maskmem_features, maskmem_pos_enc) = self._encode_new_memory(current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks, is_mask_from_pts=is_mask_from_pts)
storage_device = inference_state['storage_device']
maskmem_features = maskmem_features.to(torch.bfloat16)
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, {'maskmem_pos_enc': maskmem_pos_enc})
return (maskmem_features, maskmem_pos_enc)
def _get_maskmem_pos_enc(self, inference_state, current_out):
model_constants = inference_state['constants']
out_maskmem_pos_enc = current_out['maskmem_pos_enc']
if out_maskmem_pos_enc is not None:
if 'maskmem_pos_enc' not in model_constants:
assert isinstance(out_maskmem_pos_enc, list)
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
model_constants['maskmem_pos_enc'] = maskmem_pos_enc
else:
maskmem_pos_enc = model_constants['maskmem_pos_enc']
batch_size = out_maskmem_pos_enc[0].size(0)
expanded_maskmem_pos_enc = [x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc]
else:
expanded_maskmem_pos_enc = None
return expanded_maskmem_pos_enc
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
r = self.memory_temporal_stride_for_eval
frame_idx_begin = frame_idx - r * self.num_maskmem
frame_idx_end = frame_idx + r * self.num_maskmem
output_dict = inference_state['output_dict']
non_cond_frame_outputs = output_dict['non_cond_frame_outputs']
for t in range(frame_idx_begin, frame_idx_end + 1):
non_cond_frame_outputs.pop(t, None)
for obj_output_dict in inference_state['output_dict_per_obj'].values():
obj_output_dict['non_cond_frame_outputs'].pop(t, None)
# File: segment-anything-2-coreml-conversion/sav_dataset/sav_evaluator.py
from argparse import ArgumentParser
from utils.sav_benchmark import benchmark
''
parser = ArgumentParser()
parser.add_argument('--gt_root', required=True, help="Path to the GT folder. For SA-V, it's sav_val/Annotations_6fps or sav_test/Annotations_6fps")
parser.add_argument('--pred_root', required=True, help='Path to a folder containing folders of masks to be evaluated, with exactly the same structure as gt_root')
parser.add_argument('-n', '--num_processes', default=16, type=int, help='Number of concurrent processes')
parser.add_argument('-s', '--strict', help='Make sure every video in the gt_root folder has a corresponding video in the prediction', action='store_true')
parser.add_argument('-q', '--quiet', help='Quietly run evaluation without printing the information out', action='store_true')
parser.add_argument('--do_not_skip_first_and_last_frame', help="In SA-V val and test, we skip the first and the last annotated frames in evaluation. Set this to true for evaluation on settings that doesn't skip first and last frames", action='store_true')
if __name__ == '__main__':
args = parser.parse_args()
benchmark([args.gt_root], [args.pred_root], args.strict, args.num_processes, verbose=not args.quiet, skip_first_and_last=not args.do_not_skip_first_and_last_frame)
# File: segment-anything-2-coreml-conversion/tools/vos_inference.py
import argparse
import os
import numpy as np
import torch
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor
DAVIS_PALETTE = b'\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0 \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00 \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80 @\xa0 @ \xa0@\xa0\xa0@ \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0'
def load_ann_png(path):
mask = Image.open(path)
palette = mask.getpalette()
mask = np.array(mask).astype(np.uint8)
return (mask, palette)
def save_ann_png(path, mask, palette):
assert mask.dtype == np.uint8
assert mask.ndim == 2
output_mask = Image.fromarray(mask)
output_mask.putpalette(palette)
output_mask.save(path)
def get_per_obj_mask(mask):
object_ids = np.unique(mask)
object_ids = object_ids[object_ids > 0].tolist()
per_obj_mask = {object_id: mask == object_id for object_id in object_ids}
return per_obj_mask
def put_per_obj_mask(per_obj_mask, height, width):
mask = np.zeros((height, width), dtype=np.uint8)
object_ids = sorted(per_obj_mask)[::-1]
for object_id in object_ids:
object_mask = per_obj_mask[object_id]
object_mask = object_mask.reshape(height, width)
mask[object_mask] = object_id
return mask
def load_masks_from_dir(input_mask_dir, video_name, frame_name, per_obj_png_file):
if not per_obj_png_file:
input_mask_path = os.path.join(input_mask_dir, video_name, f'{frame_name}.png')
(input_mask, input_palette) = load_ann_png(input_mask_path)
per_obj_input_mask = get_per_obj_mask(input_mask)
else:
per_obj_input_mask = {}
for object_name in os.listdir(os.path.join(input_mask_dir, video_name)):
object_id = int(object_name)
input_mask_path = os.path.join(input_mask_dir, video_name, object_name, f'{frame_name}.png')
(input_mask, input_palette) = load_ann_png(input_mask_path)
per_obj_input_mask[object_id] = input_mask > 0
return (per_obj_input_mask, input_palette)
def save_masks_to_dir(output_mask_dir, video_name, frame_name, per_obj_output_mask, height, width, per_obj_png_file, output_palette):
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
if not per_obj_png_file:
output_mask = put_per_obj_mask(per_obj_output_mask, height, width)
output_mask_path = os.path.join(output_mask_dir, video_name, f'{frame_name}.png')
save_ann_png(output_mask_path, output_mask, output_palette)
else:
for (object_id, object_mask) in per_obj_output_mask.items():
object_name = f'{object_id:03d}'
os.makedirs(os.path.join(output_mask_dir, video_name, object_name), exist_ok=True)
output_mask = object_mask.reshape(height, width).astype(np.uint8)
output_mask_path = os.path.join(output_mask_dir, video_name, object_name, f'{frame_name}.png')
save_ann_png(output_mask_path, output_mask, output_palette)
@torch.inference_mode()
@torch.autocast(device_type='cuda', dtype=torch.bfloat16)
def vos_inference(predictor, base_video_dir, input_mask_dir, output_mask_dir, video_name, score_thresh=0.0, use_all_masks=False, per_obj_png_file=False):
video_dir = os.path.join(base_video_dir, video_name)
frame_names = [os.path.splitext(p)[0] for p in os.listdir(video_dir) if os.path.splitext(p)[-1] in ['.jpg', '.jpeg', '.JPG', '.JPEG']]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
inference_state = predictor.init_state(video_path=video_dir, async_loading_frames=False)
height = inference_state['video_height']
width = inference_state['video_width']
input_palette = None
if not use_all_masks:
input_frame_inds = [0]
else:
if not per_obj_png_file:
input_frame_inds = [idx for (idx, name) in enumerate(frame_names) if os.path.exists(os.path.join(input_mask_dir, video_name, f'{name}.png'))]
else:
input_frame_inds = [idx for object_name in os.listdir(os.path.join(input_mask_dir, video_name)) for (idx, name) in enumerate(frame_names) if os.path.exists(os.path.join(input_mask_dir, video_name, object_name, f'{name}.png'))]
input_frame_inds = sorted(set(input_frame_inds))
for input_frame_idx in input_frame_inds:
(per_obj_input_mask, input_palette) = load_masks_from_dir(input_mask_dir=input_mask_dir, video_name=video_name, frame_name=frame_names[input_frame_idx], per_obj_png_file=per_obj_png_file)
for (object_id, object_mask) in per_obj_input_mask.items():
predictor.add_new_mask(inference_state=inference_state, frame_idx=input_frame_idx, obj_id=object_id, mask=object_mask)
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
output_palette = input_palette or DAVIS_PALETTE
video_segments = {}
for (out_frame_idx, out_obj_ids, out_mask_logits) in predictor.propagate_in_video(inference_state):
per_obj_output_mask = {out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy() for (i, out_obj_id) in enumerate(out_obj_ids)}
video_segments[out_frame_idx] = per_obj_output_mask
for (out_frame_idx, per_obj_output_mask) in video_segments.items():
save_masks_to_dir(output_mask_dir=output_mask_dir, video_name=video_name, frame_name=frame_names[out_frame_idx], per_obj_output_mask=per_obj_output_mask, height=height, width=width, per_obj_png_file=per_obj_png_file, output_palette=output_palette)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--sam2_cfg', type=str, default='sam2_hiera_b+.yaml', help='SAM 2 model configuration file')
parser.add_argument('--sam2_checkpoint', type=str, default='./checkpoints/sam2_hiera_b+.pt', help='path to the SAM 2 model checkpoint')
parser.add_argument('--base_video_dir', type=str, required=True, help='directory containing videos (as JPEG files) to run VOS prediction on')
parser.add_argument('--input_mask_dir', type=str, required=True, help='directory containing input masks (as PNG files) of each video')
parser.add_argument('--video_list_file', type=str, default=None, help='text file containing the list of video names to run VOS prediction on')
parser.add_argument('--output_mask_dir', type=str, required=True, help='directory to save the output masks (as PNG files)')
parser.add_argument('--score_thresh', type=float, default=0.0, help='threshold for the output mask logits (default: 0.0)')
parser.add_argument('--use_all_masks', action='store_true', help="whether to use all available PNG files in input_mask_dir (default without this flag: just the first PNG file as input to the SAM 2 model; usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)")
parser.add_argument('--per_obj_png_file', action='store_true', help='whether use separate per-object PNG files for input and output masks (default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)')
parser.add_argument('--apply_postprocessing', action='store_true', help="whether to apply postprocessing (e.g. hole-filling) to the output masks (we don't apply such post-processing in the SAM 2 model evaluation)")
args = parser.parse_args()
hydra_overrides_extra = ['++model.non_overlap_masks=' + ('false' if args.per_obj_png_file else 'true')]
predictor = build_sam2_video_predictor(config_file=args.sam2_cfg, ckpt_path=args.sam2_checkpoint, apply_postprocessing=args.apply_postprocessing, hydra_overrides_extra=hydra_overrides_extra)
if args.use_all_masks:
print('using all available masks in input_mask_dir as input to the SAM 2 model')
else:
print("using only the first frame's mask in input_mask_dir as input to the SAM 2 model")
if args.video_list_file is not None:
with open(args.video_list_file, 'r') as f:
video_names = [v.strip() for v in f.readlines()]
else:
video_names = [p for p in os.listdir(args.base_video_dir) if os.path.isdir(os.path.join(args.base_video_dir, p))]
print(f'running VOS prediction on {len(video_names)} videos:\n{video_names}')
for (n_video, video_name) in enumerate(video_names):
print(f'\n{n_video + 1}/{len(video_names)} - running on {video_name}')
vos_inference(predictor=predictor, base_video_dir=args.base_video_dir, input_mask_dir=args.input_mask_dir, output_mask_dir=args.output_mask_dir, video_name=video_name, score_thresh=args.score_thresh, use_all_masks=args.use_all_masks, per_obj_png_file=args.per_obj_png_file)
print(f'completed VOS prediction on {len(video_names)} videos -- output masks saved to {args.output_mask_dir}')
if __name__ == '__main__':
main()