docs / huggingface_transformers-bloom-inference.txt
danidarko's picture
Upload 59 files
b1d4de0 verified
raw
history blame
61.2 kB
# File: transformers-bloom-inference-main/bloom-inference-scripts/bloom-accelerate-inference.py
import argparse
import gc
import math
import os
import time
import torch
import torch.distributed as dist
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', required=False, type=int, help='used by dist launchers')
parser.add_argument('--name', type=str, help='Name path', required=True)
parser.add_argument('--batch_size', default=1, type=int, help='batch size')
parser.add_argument('--benchmark', action='store_true', help='additionally run benchmark')
parser.add_argument('--greedy', action='store_true')
parser.add_argument('--top-k', type=int, default=0)
parser.add_argument('--top-p', type=float, default=0.0)
parser.add_argument('--dtype', type=str, help='float16 or int8', choices=['int8', 'float16'], default='float16')
return parser.parse_args()
t_start = time.time()
num_tokens = 100
args = get_args()
local_rank = int(os.getenv('LOCAL_RANK', '0'))
world_size = torch.cuda.device_count()
rank = local_rank
def print_rank0(*msg):
if rank != 0:
return
print(*msg)
print_rank0(f'Using {world_size} gpus')
model_name = args.name
print_rank0(f'Loading model {model_name}')
tokenizer = AutoTokenizer.from_pretrained(model_name)
dtype = torch.bfloat16 if model_name in ['bigscience/bloom', 'bigscience/bigscience-small-testing'] else torch.float16
infer_dtype = args.dtype
if infer_dtype == 'int8':
dtype = torch.int8
kwargs = dict(device_map='auto')
def get_world_size() -> int:
if dist.is_initialized():
return dist.get_world_size()
else:
return 1
if get_world_size() > 1:
kwargs['device_map'] = 'balanced_low_0'
if infer_dtype == 'int8':
print_rank0('Using `load_in_8bit=True` to use quanitized model')
kwargs['load_in_8bit'] = True
else:
kwargs['torch_dtype'] = dtype
model = AutoModelForCausalLM.from_pretrained(model_name, **kwargs)
if args.benchmark:
t_ready = time.time()
print_rank0(f'*** Starting to generate {num_tokens} tokens with bs={args.batch_size}')
input_sentences = ['DeepSpeed is a machine learning framework', 'He is working on', 'He has a', 'He got all', 'Everyone is happy and I can', 'The new movie that got Oscar this year', 'In the far far distance from our galaxy,', 'Peace is the only way']
if args.batch_size > len(input_sentences):
input_sentences *= math.ceil(args.batch_size / len(input_sentences))
generate_kwargs = dict(max_new_tokens=num_tokens, do_sample=False)
print_rank0(f'Generate args {generate_kwargs}')
inputs = input_sentences[:args.batch_size]
def generate():
input_tokens = tokenizer.batch_encode_plus(inputs, return_tensors='pt', padding=True)
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to('cuda:0')
outputs = model.generate(**input_tokens, **generate_kwargs)
input_tokens_lengths = [x.shape[0] for x in input_tokens.input_ids]
output_tokens_lengths = [x.shape[0] for x in outputs]
total_new_tokens = [o - i for (i, o) in zip(input_tokens_lengths, output_tokens_lengths)]
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return zip(inputs, outputs, total_new_tokens)
print_rank0('*** Running generate')
t_generate_start = time.time()
generated = generate()
t_generate_span = time.time() - t_generate_start
for (i, o, _) in generated:
print_rank0(f"{'-' * 60}\nin={i}\nout={o}\n")
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
print_rank0('*** Running benchmark')
for i in range(1):
_ = generate()
torch.cuda.synchronize()
t0 = time.time()
cycles = 5
total_new_tokens_generated = 0
for i in range(cycles):
generated = generate()
total_new_tokens_generated += sum((new_tokens for (_, _, new_tokens) in generated))
torch.cuda.synchronize()
throughput = (time.time() - t0) / total_new_tokens_generated
print_rank0(f'\n*** Performance stats:\nThroughput per token including tokenize: {throughput * 1000:.2f} msecs\nStart to ready to generate: {t_ready - t_start:.3f} secs\nTokenize and generate {total_new_tokens_generated} (bs={args.batch_size}) tokens: {t_generate_span:.3f} secs\nStart to finish: {t_ready - t_start + t_generate_span:.3f} secs\n')
# File: transformers-bloom-inference-main/bloom-inference-scripts/bloom-ds-inference.py
import gc
import io
import json
import math
import os
import time
from argparse import ArgumentParser
from pathlib import Path
import torch
import torch.distributed as dist
import deepspeed
from huggingface_hub import snapshot_download
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.models.bloom.modeling_bloom import BloomBlock as BloomBlock
from transformers.utils import is_offline_mode
tp_presharded_models = ['microsoft/bloom-deepspeed-inference-int8', 'microsoft/bloom-deepspeed-inference-fp16']
t_start = time.time()
num_tokens = 100
parser = ArgumentParser()
parser.add_argument('--name', required=True, type=str, help='model_name')
parser.add_argument('--dtype', type=str, help='float16 or int8', choices=['int8', 'float16'], default='float16')
parser.add_argument('--local_rank', required=False, type=int, help='used by dist launchers')
parser.add_argument('--batch_size', default=1, type=int, help='batch size')
parser.add_argument('--benchmark', action='store_true', help='additionally run benchmark')
args = parser.parse_args()
local_rank = int(os.getenv('LOCAL_RANK', '0'))
world_size = int(os.getenv('WORLD_SIZE', '1'))
deepspeed.init_distributed('nccl')
rank = dist.get_rank()
def print_rank0(*msg):
if rank != 0:
return
print(*msg)
def get_repo_root(model_name_or_path):
if is_offline_mode():
print_rank0('Offline mode: forcing local_files_only=True')
if rank == 0:
snapshot_download(model_name_or_path, local_files_only=is_offline_mode(), cache_dir=os.getenv('TRANSFORMERS_CACHE', None), ignore_patterns=['*.safetensors'])
dist.barrier()
return snapshot_download(model_name_or_path, local_files_only=is_offline_mode(), cache_dir=os.getenv('TRANSFORMERS_CACHE', None), ignore_patterns=['*.safetensors'])
def get_checkpoint_files(model_name_or_path):
cached_repo_dir = get_repo_root(model_name_or_path)
file_list = [str(entry) for entry in Path(cached_repo_dir).rglob('*.[bp][it][n]') if entry.is_file()]
return file_list
model_name = args.name
infer_dtype = args.dtype
tp_presharded_mode = True if model_name in tp_presharded_models else False
print_rank0(f'*** Loading the model {model_name}')
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
kernel_inject = True
if kernel_inject:
dtype = torch.float16
else:
dtype = torch.bfloat16
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage('pre-from-pretrained', force=True)
with deepspeed.OnDevice(dtype=dtype, device='meta'):
model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16)
if args.benchmark:
deepspeed.runtime.utils.see_memory_usage('post-from-pretrained', force=True)
model = model.eval()
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage('post-init-ds-zero-init', force=True)
checkpoints_json = 'checkpoints.json'
def write_checkpoints_json():
checkpoint_files = get_checkpoint_files(model_name)
if rank == 0:
data = {'type': 'BLOOM', 'checkpoints': checkpoint_files, 'version': 1.0}
json.dump(data, open(checkpoints_json, 'w'))
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage('pre-ds-inference-init', force=True)
if kernel_inject:
kwargs = dict(replace_with_kernel_inject=True)
else:
kwargs = dict(injection_policy={BloomBlock: ('self_attention.dense', 'mlp.dense_4h_to_h')})
repo_root = get_repo_root(model_name)
if tp_presharded_mode:
checkpoints_json = os.path.join(repo_root, 'ds_inference_config.json')
else:
write_checkpoints_json()
dist.barrier()
model = deepspeed.init_inference(model, mp_size=world_size, base_dir=repo_root, dtype=getattr(torch, infer_dtype), checkpoint=checkpoints_json, **kwargs)
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage('post-ds-inference-init', force=True)
model = model.module
if args.benchmark:
t_ready = time.time()
print_rank0(f'*** Starting to generate {num_tokens} tokens with bs={args.batch_size}')
input_sentences = ['DeepSpeed is a machine learning framework', 'He is working on', 'He has a', 'He got all', 'Everyone is happy and I can', 'The new movie that got Oscar this year', 'In the far far distance from our galaxy,', 'Peace is the only way']
if args.batch_size > len(input_sentences):
input_sentences *= math.ceil(args.batch_size / len(input_sentences))
generate_kwargs = dict(max_new_tokens=num_tokens, do_sample=False)
print_rank0(f'Generate args {generate_kwargs}')
inputs = input_sentences[:args.batch_size]
def generate():
input_tokens = tokenizer.batch_encode_plus(inputs, return_tensors='pt', padding=True)
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device())
outputs = model.generate(**input_tokens, **generate_kwargs)
input_tokens_lengths = [x.shape[0] for x in input_tokens.input_ids]
output_tokens_lengths = [x.shape[0] for x in outputs]
total_new_tokens = [o - i for (i, o) in zip(input_tokens_lengths, output_tokens_lengths)]
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return zip(inputs, outputs, total_new_tokens)
print_rank0('*** Running generate warmup')
_ = generate()
print_rank0('*** Running generate')
t_generate_start = time.time()
generated = generate()
t_generate_span = time.time() - t_generate_start
for (i, o, _) in generated:
print_rank0(f"{'-' * 60}\nin={i}\nout={o}\n")
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage('end-of-run', force=True)
if args.benchmark:
print_rank0('*** Running benchmark')
for i in range(1):
_ = generate()
torch.cuda.synchronize()
t0 = time.time()
cycles = 5
total_new_tokens_generated = 0
for i in range(cycles):
generated = generate()
total_new_tokens_generated += sum((new_tokens for (_, _, new_tokens) in generated))
torch.cuda.synchronize()
throughput = (time.time() - t0) / total_new_tokens_generated
print_rank0(f'\n*** Performance stats:\nThroughput per token including tokenize: {throughput * 1000:.2f} msecs\nStart to ready to generate: {t_ready - t_start:.3f} secs\nTokenize and generate {total_new_tokens_generated} (bs={args.batch_size}) tokens: {t_generate_span:.3f} secs\nStart to finish: {t_ready - t_start + t_generate_span:.3f} secs\n')
# File: transformers-bloom-inference-main/bloom-inference-scripts/bloom-ds-zero-inference.py
import gc
import math
import os
import time
from argparse import ArgumentParser
import torch
import torch.distributed as dist
import deepspeed
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.deepspeed import HfDeepSpeedConfig
from transformers.models.bloom.modeling_bloom import BloomBlock as BloomBlock
t_start = time.time()
num_tokens = 100
parser = ArgumentParser()
parser.add_argument('--name', required=True, type=str, help='model_name')
parser.add_argument('--local_rank', required=False, type=int, help='used by dist launchers')
parser.add_argument('--batch_size', default=1, type=int, help='batch size')
parser.add_argument('--benchmark', action='store_true', help='additionally run benchmark')
parser.add_argument('--cpu_offload', action='store_true', help='whether to activate CPU offload')
parser.add_argument('--nvme_offload_path', help='whether to activate NVME offload and the path on nvme')
args = parser.parse_args()
local_rank = int(os.getenv('LOCAL_RANK', '0'))
world_size = int(os.getenv('WORLD_SIZE', '1'))
deepspeed.init_distributed('nccl')
rank = dist.get_rank()
def print_rank0(*msg):
if rank != 0:
return
print(*msg)
model_name = args.name
print_rank0(f'*** Loading the model {model_name}')
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
dtype = torch.bfloat16 if model_name in ['bigscience/bloom', 'bigscience/bigscience-small-testing'] else torch.float16
model_hidden_size = config.hidden_size
train_batch_size = 1 * world_size
ds_config = {'fp16': {'enabled': dtype == torch.float16}, 'bf16': {'enabled': dtype == torch.bfloat16}, 'zero_optimization': {'stage': 3, 'overlap_comm': True, 'contiguous_gradients': True, 'reduce_bucket_size': model_hidden_size * model_hidden_size, 'stage3_prefetch_bucket_size': 0.9 * model_hidden_size * model_hidden_size, 'stage3_param_persistence_threshold': 0}, 'steps_per_print': 2000, 'train_batch_size': train_batch_size, 'train_micro_batch_size_per_gpu': 1, 'wall_clock_breakdown': False}
if args.cpu_offload and args.nvme_offload_path:
raise ValueError('Use one of --cpu_offload or --nvme_offload_path and not both')
if args.cpu_offload:
ds_config['zero_optimization']['offload_param'] = dict(device='cpu', pin_memory=True)
if args.nvme_offload_path:
ds_config['zero_optimization']['offload_param'] = dict(device='nvme', pin_memory=True, nvme_path=args.nvme_offload_path, buffer_size=4000000000.0)
dschf = HfDeepSpeedConfig(ds_config)
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage('pre-from-pretrained', force=True)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
if args.benchmark:
deepspeed.runtime.utils.see_memory_usage('post-from-pretrained', force=True)
model = model.eval()
print_rank0(ds_config)
ds_engine = deepspeed.initialize(model=model, config_params=ds_config)[0]
ds_engine.module.eval()
model = ds_engine.module
if args.benchmark:
t_ready = time.time()
deepspeed.runtime.utils.see_memory_usage('start-of-generate', force=True)
print_rank0(f'*** Starting to generate {num_tokens} tokens with bs={args.batch_size}')
input_sentences = ['DeepSpeed is a machine learning framework', 'He is working on', 'He has a', 'He got all', 'Everyone is happy and I can', 'The new movie that got Oscar this year', 'In the far far distance from our galaxy,', 'Peace is the only way']
if args.batch_size > len(input_sentences):
input_sentences *= math.ceil(args.batch_size / len(input_sentences))
generate_kwargs = dict(max_new_tokens=num_tokens, do_sample=False)
print_rank0(f'Generate args {generate_kwargs}')
inputs = input_sentences[:args.batch_size]
def generate():
input_tokens = tokenizer.batch_encode_plus(inputs, return_tensors='pt', padding=True)
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device())
outputs = model.generate(**input_tokens, **generate_kwargs)
input_tokens_lengths = [x.shape[0] for x in input_tokens.input_ids]
output_tokens_lengths = [x.shape[0] for x in outputs]
total_new_tokens = [o - i for (i, o) in zip(input_tokens_lengths, output_tokens_lengths)]
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return zip(inputs, outputs, total_new_tokens)
print_rank0('*** Running generate')
t_generate_start = time.time()
pairs = generate()
t_generate_span = time.time() - t_generate_start
for (i, o, _) in pairs:
print_rank0(f"{'-' * 60}\nin={i}\nout={o}\n")
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage('end-of-generate', force=True)
print_rank0('*** Running benchmark')
for i in range(1):
_ = generate()
torch.cuda.synchronize()
t0 = time.time()
cycles = 5
total_new_tokens_generated = 0
for i in range(cycles):
generated = generate()
total_new_tokens_generated += sum((new_tokens for (_, _, new_tokens) in generated))
torch.cuda.synchronize()
total_new_tokens_generated *= world_size
throughput = (time.time() - t0) / total_new_tokens_generated
print_rank0(f'\n*** Performance stats:\nThroughput per token including tokenize: {throughput * 1000:.2f} msecs\nStart to ready to generate: {t_ready - t_start:.3f} secs\nTokenize and generate {total_new_tokens_generated} (bs={args.batch_size}) tokens: {t_generate_span:.3f} secs\nStart to finish: {t_ready - t_start + t_generate_span:.3f} secs\n')
# File: transformers-bloom-inference-main/inference_server/benchmark.py
import argparse
import gc
from functools import partial
import torch
from .constants import DS_INFERENCE, DS_ZERO
from .model_handler.deployment import ModelDeployment
from .models import start_inference_engine
from .utils import GenerateRequest, create_generate_request, get_argument_parser, get_dummy_batch, get_world_size, parse_args, print_rank_0, run_and_log_time
def benchmark_generation(model: ModelDeployment, request: GenerateRequest, cycles: int=5):
total_new_tokens_generated = 0
for _ in range(cycles):
response = model.generate(request=request)
total_new_tokens_generated += sum((new_tokens for new_tokens in response.num_generated_tokens))
return total_new_tokens_generated
def get_benchmark_results(benchmark_time: float, initialization_time: float, total_new_tokens_generated: int, batch_size: int, cycles: int) -> str:
throughput = total_new_tokens_generated / benchmark_time
latency = benchmark_time / cycles
return f'\n*** Performance stats:\nThroughput (including tokenization) = {throughput:.2f} tokens/sec\nThroughput (including tokenization) = {1000 / throughput:.2f} msecs/token\nModel loading time = {initialization_time:.2f} secs\nTotal tokens generated = {total_new_tokens_generated} with batch size = {batch_size}\nLatency = {latency:.2f} secs\nModel loading time + generation time per batch = {initialization_time + latency:.2f} secs\n'
def benchmark_end_to_end(args: argparse.Namespace) -> None:
(model, initialization_time) = run_and_log_time(partial(ModelDeployment, args=args, grpc_allowed=False))
request = create_generate_request(get_dummy_batch(args.batch_size), args.generate_kwargs)
print_rank_0(f'generate_kwargs = {args.generate_kwargs}')
print_rank_0(f'batch_size = {args.batch_size}')
response = model.generate(request=request)
for (i, (o, _)) in zip(request.text, zip(response.text, response.num_generated_tokens)):
print_rank_0(f"{'-' * 60}\nin = {i}\nout = {o}\n")
if args.benchmark_cycles > 0:
print_rank_0('*** Running benchmark')
torch.cuda.empty_cache()
gc.collect()
model.generate(request=request)
torch.cuda.synchronize()
(total_new_tokens_generated, benchmark_time) = run_and_log_time(partial(benchmark_generation, model=model, request=request, cycles=args.benchmark_cycles))
if args.deployment_framework == DS_ZERO:
total_new_tokens_generated *= get_world_size()
print_rank_0(get_benchmark_results(benchmark_time, initialization_time, total_new_tokens_generated, args.batch_size, args.benchmark_cycles))
def get_args() -> argparse.Namespace:
parser = get_argument_parser()
group = parser.add_argument_group(title='launch config')
group.add_argument('--benchmark_cycles', type=int, default=0, help='additionally run benchmark')
group.add_argument('--local_rank', required=False, type=int, help='used by dist launchers')
group.add_argument('--batch_size', default=1, type=int, help='batch size')
group.add_argument('--cpu_offload', action='store_true', help='whether to activate CPU offload for DS ZeRO')
args = parse_args(parser)
launched_with_deepspeed = args.deployment_framework in [DS_INFERENCE, DS_ZERO]
assert args.max_batch_size == None, 'max_batch_size is not supported with benchmark'
if not launched_with_deepspeed:
assert args.local_rank == None, 'local_rank must be None if not launched with DeepSpeed'
if args.cpu_offload:
assert args.deployment_framework == DS_ZERO, 'cpu_offload only works with DS_ZeRO'
return args
def main() -> None:
args = get_args()
start_inference_engine(args.deployment_framework)
benchmark_end_to_end(args)
if __name__ == '__main__':
main()
# File: transformers-bloom-inference-main/inference_server/cli.py
import argparse
import json
import sys
from .model_handler import ModelDeployment
from .utils import get_argument_parser, parse_args, print_rank_0
def get_args() -> argparse.Namespace:
parser = get_argument_parser()
args = parse_args(parser)
return args
def main() -> None:
args = get_args()
model = ModelDeployment(args, True)
generate_kwargs = args.generate_kwargs
while True:
input_text = input('Input text: ')
if input('change generate_kwargs? [y/n] ') == 'y':
while True:
try:
generate_kwargs = json.loads(input('Generate kwargs: '))
break
except Exception as e:
(e_type, e_message, _) = sys.exc_info()
print('error =', e_type.__name__)
print('message =', e_message)
continue
response = model.generate(text=[input_text], generate_kwargs=generate_kwargs)
print_rank_0('Output text:', response.text[0])
print_rank_0('Generated tokens:', response.num_generated_tokens[0])
if __name__ == '__main__':
main()
# File: transformers-bloom-inference-main/inference_server/download_model.py
import argparse
from inference_server.models import get_hf_model_class
from transformers import AutoConfig, AutoTokenizer
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, required=True, help='model to use')
parser.add_argument('--model_class', type=str, required=True, help='model class to use')
args = parser.parse_args()
return args
def main() -> None:
args = get_args()
print('downloading', args.model_name)
AutoConfig.from_pretrained(args.model_name)
AutoTokenizer.from_pretrained(args.model_name)
get_hf_model_class(args.model_class).from_pretrained(args.model_name)
if __name__ == '__main__':
main()
# File: transformers-bloom-inference-main/inference_server/model_handler/deployment.py
""""""
import argparse
import asyncio
import subprocess
import time
from typing import List
import grpc
from ..constants import DS_INFERENCE, DS_ZERO
from ..models import get_model_class, load_tokenizer
from ..utils import ForwardRequest, ForwardResponse, GenerateResponse, TokenizeRequest, TokenizeResponse, create_generate_request, get_cuda_visible_devices, get_str_dtype, get_world_size, print_rank_0
from .grpc_utils.pb import generation_pb2, generation_pb2_grpc
class ModelDeployment:
def __init__(self, args: argparse.Namespace, grpc_allowed: bool=False):
self.cuda_visible_devices = get_cuda_visible_devices()
self.num_gpus = get_world_size()
self.use_grpc_server = self.should_use_grpc(args.deployment_framework, grpc_allowed)
if self.use_grpc_server:
self.tokenizer = load_tokenizer(args.model_name)
self.initialize_ports()
self.dtype_proto_field = {str: 'svalue', int: 'ivalue', float: 'fvalue', bool: 'bvalue'}
self._initialize_service(args)
self._wait_until_server_is_live()
self.asyncio_loop = asyncio.get_event_loop()
self._initialize_grpc_client()
else:
self.model = get_model_class(args.deployment_framework)(args)
print_rank_0('model loaded')
def should_use_grpc(self, deployment_framework: str, grpc_allowed: bool) -> bool:
if grpc_allowed and get_world_size() > 1:
return deployment_framework in [DS_INFERENCE, DS_ZERO]
return False
def initialize_ports(self):
self.ports = []
for i in range(self.num_gpus):
self.ports.append(50950 + self.cuda_visible_devices[i])
def _is_socket_open(self, port):
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
result = sock.connect_ex(('0.0.0.0', port))
sock.close()
return result == 0
def _is_server_process_alive(self):
if self.process is None:
return True
try:
self.process.wait(1)
except subprocess.TimeoutExpired as err:
is_alive = True
else:
is_alive = False
return is_alive
def _wait_until_server_is_live(self):
sockets_open = False
while not sockets_open:
sockets_open = self._is_socket_open(self.ports[0])
process_alive = self._is_server_process_alive()
if not process_alive:
raise RuntimeError('server crashed for some reason, unable to proceed')
time.sleep(4)
print_rank_0('waiting for server to start...')
print_rank_0(f'server has started on {self.ports[0]}')
def dict_to_proto(self, generate_kwargs: dict) -> dict:
result = {}
for (k, v) in generate_kwargs.items():
if v is not None:
x = generation_pb2.Value()
setattr(x, self.dtype_proto_field[type(v)], v)
result[k] = x
return result
def _initialize_service(self, args: argparse.Namespace):
if self._is_socket_open(self.ports[0]):
raise RuntimeError(f'Server is already running on port {self.ports}, please shutdown or use different port.')
if args.deployment_framework in [DS_INFERENCE, DS_ZERO]:
ports = ' '.join(map(str, self.ports))
cmd = f'inference_server.model_handler.launch --model_name {args.model_name} --deployment_framework {args.deployment_framework} --dtype {get_str_dtype(args.dtype)} --port {ports} --model_class {args.model_class}'
if args.max_batch_size is not None:
cmd += f' --max_batch_size {args.max_batch_size}'
if args.max_input_length is not None:
cmd += f' --max_input_length {args.max_input_length}'
master_port = 29500 + min(self.cuda_visible_devices)
cuda_visible_devices = ','.join(map(str, self.cuda_visible_devices))
cmd = f'deepspeed --master_port {master_port} --include localhost:{cuda_visible_devices} --module {cmd}'
else:
raise NotImplementedError(f'unsupported deployment_framework: {args.deployment_framework}')
cmd = cmd.split(' ')
self.process = subprocess.Popen(cmd)
def _initialize_grpc_client(self):
self.stubs = []
for i in self.ports:
channel = grpc.aio.insecure_channel(f'localhost:{i}')
stub = generation_pb2_grpc.GenerationServiceStub(channel)
self.stubs.append(stub)
async def generate_in_tensor_parallel(self, text: List[str], generate_kwargs: dict):
responses = []
for i in range(self.num_gpus):
responses.append(self.asyncio_loop.create_task(self.generate_async(i, text, generate_kwargs)))
await responses[0]
return responses[0]
async def generate_async(self, stub_id: int, text: List[str], generate_kwargs: dict):
req = generation_pb2.GenerationRequestProto(texts=text, generate_kwargs=generate_kwargs)
response = await self.stubs[stub_id].Generate(req)
return response
async def forward_in_tensor_parallel(self, conditioning_text: List[str], response: List[str]):
responses = []
for i in range(self.num_gpus):
responses.append(self.asyncio_loop.create_task(self.forward_async(i, conditioning_text, response)))
await responses[0]
return responses[0]
async def forward_async(self, stub_id: int, conditioning_text: List[str], response: List[str]):
req = generation_pb2.ForwardRequestProto(conditioning_text=conditioning_text, response=response)
response = await self.stubs[stub_id].Forward(req)
return response
def generate(self, **kwargs) -> GenerateResponse:
if self.use_grpc_server:
if 'request' in kwargs:
text = kwargs['request'].text
generate_kwargs = kwargs['request'].get_generate_kwargs()
else:
text = kwargs['text']
generate_kwargs = kwargs['generate_kwargs']
generate_kwargs = self.dict_to_proto(generate_kwargs)
response = self.asyncio_loop.run_until_complete(self.generate_in_tensor_parallel(text, generate_kwargs)).result()
if response.error:
raise Exception(response.error)
else:
return GenerateResponse(text=[r for r in response.texts], num_generated_tokens=[n for n in response.num_generated_tokens])
else:
if 'request' in kwargs:
request = kwargs['request']
else:
request = create_generate_request(**kwargs)
response = self.model.generate(request)
if isinstance(response, Exception):
raise response
else:
return response
def forward(self, request: ForwardRequest) -> ForwardResponse:
if self.use_grpc_server:
response = self.asyncio_loop.run_until_complete(self.forward_in_tensor_parallel(request.conditioning_text, request.response)).result()
if response.error:
raise Exception(response.error)
else:
return ForwardResponse(nll=response.nll)
else:
response = self.model.forward(request)
if isinstance(response, Exception):
raise response
else:
return response
def tokenize(self, request: TokenizeRequest) -> TokenizeResponse:
if self.use_grpc_server:
response = self.tokenizer(request.text, padding=request.padding)
response = TokenizeResponse(token_ids=response.input_ids, attention_mask=response.attention_mask)
else:
response = self.model.tokenize(request)
return response
# File: transformers-bloom-inference-main/inference_server/model_handler/grpc_utils/generation_server.py
import os
from concurrent import futures
import torch
import grpc
from ...models import Model
from ...utils import ForwardRequest, TokenizeRequest, create_generate_request, print_rank_0
from .pb import generation_pb2, generation_pb2_grpc
class GenerationServer(generation_pb2_grpc.GenerationServiceServicer):
def __init__(self, model: Model) -> None:
self.model = model
def _unpack_proto_query_kwargs(self, query_kwargs):
query_kwargs = {k: getattr(v, v.WhichOneof('oneof_values')) for (k, v) in query_kwargs.items()}
return query_kwargs
def Generate(self, request, context):
text = [r for r in request.texts]
generate_kwargs = self._unpack_proto_query_kwargs(request.generate_kwargs)
request = create_generate_request(text=text, generate_kwargs=generate_kwargs)
local_rank = int(os.getenv('LOCAL_RANK', '0'))
torch.cuda.set_device(local_rank)
self.model.input_device = local_rank
response = self.model.generate(request)
if isinstance(response, Exception):
response = generation_pb2.GenerationResponseProto(error=str(response), is_encoder_decoder=response.is_encoder_decoder)
else:
response = generation_pb2.GenerationResponseProto(texts=response.text, num_generated_tokens=response.num_generated_tokens, is_encoder_decoder=response.is_encoder_decoder)
return response
def Forward(self, request, context):
conditioning_text = [r for r in request.conditioning_text]
response = [r for r in request.response]
request = ForwardRequest(conditioning_text=conditioning_text, response=response)
local_rank = int(os.getenv('LOCAL_RANK', '0'))
torch.cuda.set_device(local_rank)
self.model.input_device = local_rank
response = self.model.forward(request)
if isinstance(response, Exception):
response = generation_pb2.ForwardResponseProto(error=str(response), is_encoder_decoder=response.is_encoder_decoder)
else:
response = generation_pb2.ForwardResponseProto(nll=response.nll, is_encoder_decoder=response.is_encoder_decoder)
return response
def serve(inference_pipeline, port):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=1))
generation_pb2_grpc.add_GenerationServiceServicer_to_server(GenerationServer(inference_pipeline), server)
server.add_insecure_port(f'[::]:{port}')
print_rank_0('About to start server')
server.start()
print_rank_0('Started')
server.wait_for_termination()
# File: transformers-bloom-inference-main/inference_server/model_handler/grpc_utils/pb/generation_pb2.py
""""""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x10generation.proto\x12\ngeneration"_\n\x05Value\x12\x10\n\x06svalue\x18\x01 \x01(\tH\x00\x12\x10\n\x06ivalue\x18\x02 \x01(\x03H\x00\x12\x10\n\x06fvalue\x18\x03 \x01(\x02H\x00\x12\x10\n\x06bvalue\x18\x04 \x01(\x08H\x00B\x0e\n\x0coneof_values"\xc2\x01\n\x16GenerationRequestProto\x12\r\n\x05texts\x18\x01 \x03(\t\x12O\n\x0fgenerate_kwargs\x18\x02 \x03(\x0b26.generation.GenerationRequestProto.GenerateKwargsEntry\x1aH\n\x13GenerateKwargsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12 \n\x05value\x18\x02 \x01(\x0b2\x11.generation.Value:\x028\x01"q\n\x17GenerationResponseProto\x12\r\n\x05texts\x18\x01 \x03(\t\x12\x1c\n\x14num_generated_tokens\x18\x02 \x03(\x05\x12\r\n\x05error\x18\x03 \x01(\t\x12\x1a\n\x12is_encoder_decoder\x18\x04 \x01(\x08"B\n\x13ForwardRequestProto\x12\x19\n\x11conditioning_text\x18\x01 \x03(\t\x12\x10\n\x08response\x18\x02 \x03(\t"N\n\x14ForwardResponseProto\x12\x0b\n\x03nll\x18\x01 \x01(\x02\x12\r\n\x05error\x18\x02 \x01(\t\x12\x1a\n\x12is_encoder_decoder\x18\x03 \x01(\x082\xba\x01\n\x11GenerationService\x12U\n\x08Generate\x12".generation.GenerationRequestProto\x1a#.generation.GenerationResponseProto"\x00\x12N\n\x07Forward\x12\x1f.generation.ForwardRequestProto\x1a .generation.ForwardResponseProto"\x00b\x06proto3')
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'generation_pb2', globals())
if _descriptor._USE_C_DESCRIPTORS == False:
DESCRIPTOR._options = None
_GENERATIONREQUESTPROTO_GENERATEKWARGSENTRY._options = None
_GENERATIONREQUESTPROTO_GENERATEKWARGSENTRY._serialized_options = b'8\x01'
_VALUE._serialized_start = 32
_VALUE._serialized_end = 127
_GENERATIONREQUESTPROTO._serialized_start = 130
_GENERATIONREQUESTPROTO._serialized_end = 324
_GENERATIONREQUESTPROTO_GENERATEKWARGSENTRY._serialized_start = 252
_GENERATIONREQUESTPROTO_GENERATEKWARGSENTRY._serialized_end = 324
_GENERATIONRESPONSEPROTO._serialized_start = 326
_GENERATIONRESPONSEPROTO._serialized_end = 439
_FORWARDREQUESTPROTO._serialized_start = 441
_FORWARDREQUESTPROTO._serialized_end = 507
_FORWARDRESPONSEPROTO._serialized_start = 509
_FORWARDRESPONSEPROTO._serialized_end = 587
_GENERATIONSERVICE._serialized_start = 590
_GENERATIONSERVICE._serialized_end = 776
# File: transformers-bloom-inference-main/inference_server/model_handler/grpc_utils/pb/generation_pb2_grpc.py
""""""
import grpc
from . import generation_pb2 as generation__pb2
class GenerationServiceStub(object):
def __init__(self, channel):
self.Generate = channel.unary_unary('/generation.GenerationService/Generate', request_serializer=generation__pb2.GenerationRequestProto.SerializeToString, response_deserializer=generation__pb2.GenerationResponseProto.FromString)
self.Forward = channel.unary_unary('/generation.GenerationService/Forward', request_serializer=generation__pb2.ForwardRequestProto.SerializeToString, response_deserializer=generation__pb2.ForwardResponseProto.FromString)
class GenerationServiceServicer(object):
def Generate(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Forward(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_GenerationServiceServicer_to_server(servicer, server):
rpc_method_handlers = {'Generate': grpc.unary_unary_rpc_method_handler(servicer.Generate, request_deserializer=generation__pb2.GenerationRequestProto.FromString, response_serializer=generation__pb2.GenerationResponseProto.SerializeToString), 'Forward': grpc.unary_unary_rpc_method_handler(servicer.Forward, request_deserializer=generation__pb2.ForwardRequestProto.FromString, response_serializer=generation__pb2.ForwardResponseProto.SerializeToString)}
generic_handler = grpc.method_handlers_generic_handler('generation.GenerationService', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
class GenerationService(object):
@staticmethod
def Generate(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None):
return grpc.experimental.unary_unary(request, target, '/generation.GenerationService/Generate', generation__pb2.GenerationRequestProto.SerializeToString, generation__pb2.GenerationResponseProto.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Forward(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None):
return grpc.experimental.unary_unary(request, target, '/generation.GenerationService/Forward', generation__pb2.ForwardRequestProto.SerializeToString, generation__pb2.ForwardResponseProto.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
# File: transformers-bloom-inference-main/inference_server/model_handler/launch.py
""""""
import argparse
import torch.distributed as dist
from ..models import get_model_class, start_inference_engine
from ..utils import get_argument_parser, parse_args
from .grpc_utils.generation_server import serve
def get_args() -> argparse.Namespace:
parser = get_argument_parser()
group = parser.add_argument_group(title='launch config')
group.add_argument('--local_rank', required=False, type=int, help='used by dist launchers')
group.add_argument('--cpu_offload', action='store_true', help='whether to activate CPU offload for DS ZeRO')
group.add_argument('--ports', nargs='+', help='GRPC ports')
args = parse_args(parser)
return args
def main():
args = get_args()
start_inference_engine(args.deployment_framework)
model = get_model_class(args.deployment_framework)(args)
serve(model, args.ports[dist.get_rank()])
if __name__ == '__main__':
main()
# File: transformers-bloom-inference-main/inference_server/models/__init__.py
from ..constants import DS_INFERENCE, DS_ZERO, HF_ACCELERATE, HF_CPU
from .model import Model, get_hf_model_class, load_tokenizer
def get_model_class(deployment_framework: str):
if deployment_framework == HF_ACCELERATE:
from .hf_accelerate import HFAccelerateModel
return HFAccelerateModel
elif deployment_framework == HF_CPU:
from .hf_cpu import HFCPUModel
return HFCPUModel
elif deployment_framework == DS_INFERENCE:
from .ds_inference import DSInferenceModel
return DSInferenceModel
elif deployment_framework == DS_ZERO:
from .ds_zero import DSZeROModel
return DSZeROModel
else:
raise ValueError(f'Unknown deployment framework {deployment_framework}')
def start_inference_engine(deployment_framework: str) -> None:
if deployment_framework in [DS_INFERENCE, DS_ZERO]:
import deepspeed
deepspeed.init_distributed('nccl')
# File: transformers-bloom-inference-main/inference_server/models/ds_inference.py
import glob
import io
import json
import os
from argparse import Namespace
from functools import partial
import torch
import deepspeed
from huggingface_hub import try_to_load_from_cache
from transformers import AutoConfig
from ..utils import get_world_size, run_rank_n
from .model import Model, get_hf_model_class
class DSInferenceModel(Model):
def __init__(self, args: Namespace) -> None:
super().__init__(args)
with deepspeed.OnDevice(dtype=torch.float16, device='meta'):
self.model = get_hf_model_class(args.model_class).from_config(AutoConfig.from_pretrained(args.model_name), torch_dtype=torch.bfloat16)
self.model = self.model.eval()
downloaded_model_path = get_model_path(args.model_name)
if args.dtype in [torch.float16, torch.int8]:
checkpoints_json = os.path.join(downloaded_model_path, 'ds_inference_config.json')
if os.path.isfile(checkpoints_json):
self.model = deepspeed.init_inference(self.model, mp_size=get_world_size(), base_dir=downloaded_model_path, dtype=args.dtype, checkpoint=checkpoints_json, replace_with_kernel_inject=True)
else:
with TemporaryCheckpointsJSON(downloaded_model_path) as checkpoints_json:
self.model = deepspeed.init_inference(self.model, mp_size=get_world_size(), base_dir=downloaded_model_path, dtype=args.dtype, checkpoint=checkpoints_json, replace_with_kernel_inject=True)
elif args.dtype == torch.bfloat16:
raise NotImplementedError('bfloat16 is not yet supported')
self.model = self.model.module
self.input_device = torch.cuda.current_device()
self.post_init(args.model_name)
class TemporaryCheckpointsJSON:
def __init__(self, model_path: str):
self.tmp_directory = 'tmp'
self.tmp_file = os.path.join(self.tmp_directory, 'checkpoints.json')
self.model_path = model_path
def write_checkpoints_json(self) -> None:
print(self.model_path)
with io.open(self.tmp_file, 'w', encoding='utf-8') as f:
data = {'type': 'BLOOM', 'checkpoints': glob.glob(f'{self.model_path}/*.bin'), 'version': 1.0}
json.dump(data, f)
def __enter__(self):
run_rank_n(os.makedirs, barrier=True)(self.tmp_directory, exist_ok=True)
run_rank_n(self.write_checkpoints_json, barrier=True)()
return self.tmp_file
def __exit__(self, type, value, traceback):
return
def get_model_path(model_name: str):
try:
config_file = 'config.json'
config_path = try_to_load_from_cache(model_name, config_file, cache_dir=os.getenv('TRANSFORMERS_CACHE'))
if config_path is None:
return model_name
else:
return os.path.dirname(config_path)
except:
return model_name
# File: transformers-bloom-inference-main/inference_server/models/ds_zero.py
from argparse import Namespace
import torch
import deepspeed
from transformers import AutoConfig
from transformers.deepspeed import HfDeepSpeedConfig
from ..utils import get_world_size
from .model import Model, get_hf_model_class
class DSZeROModel(Model):
def __init__(self, args: Namespace) -> None:
super().__init__(args)
config = AutoConfig.from_pretrained(args.model_name)
train_micro_batch_size_per_gpu = 1
train_batch_size = train_micro_batch_size_per_gpu * get_world_size()
ds_config = {'fp16': {'enabled': args.dtype == torch.float16}, 'bf16': {'enabled': args.dtype == torch.bfloat16}, 'zero_optimization': {'stage': 3, 'overlap_comm': True, 'contiguous_gradients': True, 'reduce_bucket_size': config.hidden_size * config.hidden_size, 'stage3_prefetch_bucket_size': 0.9 * config.hidden_size * config.hidden_size, 'stage3_param_persistence_threshold': 0}, 'steps_per_print': 2000, 'train_batch_size': train_batch_size, 'train_micro_batch_size_per_gpu': train_micro_batch_size_per_gpu, 'wall_clock_breakdown': False}
if args.cpu_offload:
ds_config['zero_optimization']['offload_param'] = {'device': 'cpu', 'pin_memory': True}
dschf = HfDeepSpeedConfig(ds_config)
self.model = get_hf_model_class(args.model_class).from_pretrained(args.model_name, torch_dtype=args.dtype)
self.model = self.model.eval()
self.model = deepspeed.initialize(model=self.model, config_params=ds_config)[0]
self.model.module.eval()
self.model = self.model.module
self.input_device = torch.cuda.current_device()
self.post_init(args.model_name)
# File: transformers-bloom-inference-main/inference_server/models/hf_accelerate.py
from argparse import Namespace
import torch
from ..utils import get_world_size
from .model import Model, get_hf_model_class
class HFAccelerateModel(Model):
def __init__(self, args: Namespace) -> None:
super().__init__(args)
kwargs = {'pretrained_model_name_or_path': args.model_name, 'device_map': 'auto'}
if get_world_size() > 1:
kwargs['device_map'] = 'balanced_low_0'
if args.dtype == torch.int8:
kwargs['load_in_8bit'] = True
else:
kwargs['torch_dtype'] = args.dtype
self.model = get_hf_model_class(args.model_class).from_pretrained(**kwargs)
self.model.requires_grad_(False)
self.model.eval()
self.input_device = 'cuda:0'
self.post_init(args.model_name)
# File: transformers-bloom-inference-main/inference_server/models/model.py
import argparse
import copy
from typing import List, Union
import torch
import transformers
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
from ..utils import ForwardRequest, ForwardResponse, GenerateRequest, GenerateResponse, TokenizeRequest, TokenizeResponse
class Model:
def __init__(self, args: argparse.Namespace) -> None:
self.model = None
self.input_device = None
self.max_input_length = args.max_input_length
self.max_batch_size = args.max_batch_size
def post_init(self, model_name: str) -> None:
self.is_encoder_decoder = AutoConfig.from_pretrained(model_name).is_encoder_decoder
self.generation_config = GenerationConfig.from_model_config(AutoConfig.from_pretrained(model_name))
self.tokenizer = load_tokenizer(model_name)
self.pad = self.tokenizer.pad_token_id
self.prefix_token_id = self.tokenizer('A')['input_ids'][0]
def get_generation_config(self, request: GenerateRequest) -> GenerationConfig:
generation_config = copy.deepcopy(self.generation_config)
request = dict(request)
request_filtered = {}
for (key, value) in request.items():
if value is not None and key not in ['text', 'remove_input_from_output']:
request_filtered[key] = value
request_filtered['return_dict_in_generate'] = True
generation_config.update(**request_filtered)
return generation_config
def generate(self, request: GenerateRequest) -> Union[GenerateResponse, Exception]:
try:
batch_size = len(request.text)
check_batch_size(batch_size, self.max_batch_size)
input_tokens = self.tokenizer(request.text, return_tensors='pt', padding=True)
max_input_length_in_batch = input_tokens.input_ids[0].shape[0]
check_max_input_length(max_input_length_in_batch, self.max_input_length)
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to(self.input_device)
num_input_tokens = input_tokens['input_ids'].shape[1]
generation_config = self.get_generation_config(request)
output = self.model.generate(**input_tokens, generation_config=generation_config)
output_tokens = output.sequences
if self.is_encoder_decoder:
num_generated_tokens = (output_tokens != self.pad).sum(dim=-1).tolist()
generated_text = self.tokenizer.batch_decode(output_tokens, skip_special_tokens=True)
else:
generated_tokens = output_tokens[:, num_input_tokens:]
num_generated_tokens = (generated_tokens != self.pad).sum(dim=-1).tolist()
if request.remove_input_from_output:
prefix_to_add = torch.tensor([[self.prefix_token_id]] * batch_size).to(self.input_device)
generated_tokens = torch.cat([prefix_to_add, generated_tokens], dim=1)
generated_text = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
generated_text = [i[1:] for i in generated_text]
else:
generated_text = self.tokenizer.batch_decode(output_tokens, skip_special_tokens=True)
return GenerateResponse(text=generated_text, num_generated_tokens=num_generated_tokens, is_encoder_decoder=self.is_encoder_decoder)
except Exception as exception:
return exception
def forward(self, request: ForwardRequest) -> Union[ForwardResponse, Exception]:
def prepare_tensors(conditioning_tokens: List[List[int]], response_tokens: List[List[int]]):
bs = len(conditioning_tokens)
input_ids = [conditioning_tokens[i] + response_tokens[i] for i in range(bs)]
attention_mask = [[1] * (len(conditioning_tokens[i]) + len(response_tokens[i])) for i in range(bs)]
labels = [[-100] * len(conditioning_tokens[i]) + response_tokens[i] for i in range(bs)]
input_ids = pad(input_ids, self.tokenizer.pad_token_id)
attention_mask = pad(attention_mask, 0)
labels = pad(labels, -100)
return {'input_ids': torch.tensor(input_ids), 'attention_mask': torch.tensor(attention_mask), 'labels': torch.tensor(labels)}
def pad(arrays: list, padding: int, max_length: int=None):
if max_length is None:
max_length = max(list(map(len, arrays)))
arrays = [[padding] * (max_length - len(array)) + array for array in arrays]
return arrays
try:
batch_size = len(request.conditioning_text)
check_batch_size(batch_size, self.max_batch_size)
conditioning_tokens = self.tokenizer(request.conditioning_text)['input_ids']
response_tokens = self.tokenizer(request.response)['input_ids']
max_length_in_batch = max([len(conditioning_tokens) + len(response_tokens)])
check_max_input_length(max_length_in_batch, self.max_input_length)
input_tokens = prepare_tensors(conditioning_tokens, response_tokens)
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to(self.input_device)
loss = self.model(**input_tokens).loss
return ForwardResponse(nll=loss.item(), is_encoder_decoder=self.is_encoder_decoder)
except Exception as exception:
return exception
def tokenize(self, request: TokenizeRequest) -> TokenizeResponse:
return TokenizeResponse(token_ids=self.tokenizer(request.text).input_ids, is_encoder_decoder=self.is_encoder_decoder)
def check_max_input_length(input_token_length: int, max_input_length: int) -> None:
if max_input_length is None:
return
if input_token_length > max_input_length:
raise Exception(f'max supported input length = {max_input_length} for now')
def check_batch_size(batch_size: int, max_batch_size: int) -> None:
if max_batch_size is None:
return
if batch_size > max_batch_size:
raise Exception(f'max supported batch size = {max_batch_size} for now')
def get_hf_model_class(model_class: str) -> Union[AutoModelForCausalLM, AutoModelForSeq2SeqLM]:
return getattr(transformers, model_class)
def load_tokenizer(model_name: str) -> AutoTokenizer:
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left')
if tokenizer.pad_token_id is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
return tokenizer
# File: transformers-bloom-inference-main/inference_server/server.py
import os
from functools import partial
from flask import Flask, request
from flask_api import status
from pydantic import BaseModel
from .constants import HF_ACCELERATE
from .model_handler.deployment import ModelDeployment
from .utils import ForwardRequest, GenerateRequest, TokenizeRequest, get_exception_response, get_num_tokens_to_generate, get_torch_dtype, parse_bool, run_and_log_time
class QueryID(BaseModel):
generate_query_id: int = 0
tokenize_query_id: int = 0
forward_query_id: int = 0
class Args:
def __init__(self) -> None:
self.deployment_framework = os.getenv('DEPLOYMENT_FRAMEWORK', HF_ACCELERATE)
self.model_name = os.getenv('MODEL_NAME')
self.model_class = os.getenv('MODEL_CLASS')
self.dtype = get_torch_dtype(os.getenv('DTYPE'))
self.allowed_max_new_tokens = int(os.getenv('ALLOWED_MAX_NEW_TOKENS', 100))
self.max_input_length = int(os.getenv('MAX_INPUT_LENGTH', 512))
self.max_batch_size = int(os.getenv('MAX_BATCH_SIZE', 4))
self.debug = parse_bool(os.getenv('DEBUG', 'false'))
args = Args()
model = ModelDeployment(args, True)
query_ids = QueryID()
app = Flask(__name__)
@app.route('/query_id/', methods=['GET'])
def query_id():
return (query_ids.dict(), status.HTTP_200_OK)
@app.route('/tokenize/', methods=['POST'])
def tokenize():
try:
x = request.get_json()
x = TokenizeRequest(**x)
(response, total_time_taken) = run_and_log_time(partial(model.tokenize, request=x))
response.query_id = query_ids.tokenize_query_id
query_ids.tokenize_query_id += 1
response.total_time_taken = '{:.2f} msecs'.format(total_time_taken * 1000)
return (response.dict(), status.HTTP_200_OK)
except Exception:
response = get_exception_response(query_ids.tokenize_query_id, args.debug)
query_ids.tokenize_query_id += 1
return (response, status.HTTP_500_INTERNAL_SERVER_ERROR)
@app.route('/generate/', methods=['POST'])
def generate():
try:
x = request.get_json()
x = GenerateRequest(**x)
x.max_new_tokens = get_num_tokens_to_generate(x.max_new_tokens, args.allowed_max_new_tokens)
(response, total_time_taken) = run_and_log_time(partial(model.generate, request=x))
response.query_id = query_ids.generate_query_id
query_ids.generate_query_id += 1
response.total_time_taken = '{:.2f} secs'.format(total_time_taken)
return (response.dict(), status.HTTP_200_OK)
except Exception:
response = get_exception_response(query_ids.generate_query_id, args.debug)
query_ids.generate_query_id += 1
return (response, status.HTTP_500_INTERNAL_SERVER_ERROR)
@app.route('/forward/', methods=['POST'])
def forward():
try:
x = request.get_json()
x = ForwardRequest(**x)
if len(x.conditioning_text) != len(x.response):
raise Exception('unequal number of elements in conditioning_text and response arguments')
(response, total_time_taken) = run_and_log_time(partial(model.forward, request=x))
response.query_id = query_ids.forward_query_id
query_ids.forward_query_id += 1
response.total_time_taken = '{:.2f} secs'.format(total_time_taken)
return (response.dict(), status.HTTP_200_OK)
except Exception:
response = get_exception_response(query_ids.forward_query_id, args.debug)
query_ids.forward_query_id += 1
return (response, status.HTTP_500_INTERNAL_SERVER_ERROR)
# File: transformers-bloom-inference-main/server_request.py
import argparse
import requests
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title='launch config')
group.add_argument('--host', type=str, required=True, help='host address')
group.add_argument('--port', type=int, required=True, help='port number')
return parser.parse_args()
def generate(url: str) -> None:
url = url + '/generate/'
request_body = {'text': ['DeepSpeed', 'DeepSpeed is a', 'DeepSpeed is a machine', 'DeepSpeed is a machine learning framework'], 'max_new_tokens': 40}
response = requests.post(url=url, json=request_body, verify=False)
print(response.json(), '\n')
def tokenize(url: str) -> None:
url = url + '/tokenize/'
request_body = {'text': ['DeepSpeed is a', 'DeepSpeed is a machine learning framework']}
response = requests.post(url=url, json=request_body, verify=False)
print(response.json(), '\n')
def forward(url: str) -> None:
url = url + '/forward/'
request_body = {'conditioning_text': ['DeepSpeed', 'DeepSpeed is a', 'DeepSpeed is a machine', 'DeepSpeed is a machine learning framework'], 'response': ['DeepSpeed', 'DeepSpeed is a', 'DeepSpeed is a machine', 'DeepSpeed is a machine learning framework']}
response = requests.post(url=url, json=request_body, verify=False)
print(response.json(), '\n')
def query_id(url: str) -> None:
url = url + '/query_id/'
response = requests.get(url=url, verify=False)
print(response.json(), '\n')
def main():
args = get_args()
url = 'http://{}:{}'.format(args.host, args.port)
generate(url)
tokenize(url)
forward(url)
query_id(url)
if __name__ == '__main__':
main()
# File: transformers-bloom-inference-main/ui.py
import argparse
import requests
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.routing import APIRoute, Mount
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from transformers import AutoTokenizer
from uvicorn import run
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title='launch config')
group.add_argument('--ui_host', type=str, default='127.0.0.1', help='host address for UI')
group.add_argument('--ui_port', type=int, default=5001, help='port number for UI')
group.add_argument('--generation_backend_host', type=str, default='127.0.0.1', help='host address for generation server')
group.add_argument('--generation_backend_port', type=int, default=5000, help='port number for generation server')
return parser.parse_args()
class Server:
def __init__(self, args: argparse.Namespace):
self.templates = Jinja2Templates(directory='templates')
self.ui_host = args.ui_host
self.ui_port = args.ui_port
self.generation_backend_host = args.generation_backend_host
self.generation_backend_port = args.generation_backend_port
self.workers = 1
self.tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom')
self.app = FastAPI(routes=[APIRoute('/', self.homepage, methods=['GET'], response_class=HTMLResponse), APIRoute('/generate/', self.generate, methods=['POST']), Mount('/static/', StaticFiles(directory='static'), name='static')], timeout=600)
self.prefix_checkpoints_list = None
def homepage(self, request: Request) -> HTMLResponse:
return self.templates.TemplateResponse('index.html', {'request': request})
def generate(self, request: dict) -> JSONResponse:
response = requests.post(f'http://{self.generation_backend_host}:{self.generation_backend_port}/generate', json=request, verify=False)
return JSONResponse(content=response.json())
def run(self):
self.app.add_middleware(CORSMiddleware, allow_origins=['*'], allow_credentials=True, allow_methods=['*'], allow_headers=['*'])
run(self.app, host=self.ui_host, port=self.ui_port, workers=self.workers)
def main() -> None:
Server(get_args()).run()
if __name__ == '__main__':
main()