File size: 15,441 Bytes
706c28a
 
72535ea
ee1a93a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72535ea
ee1a93a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f06dbe5
ee1a93a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce0f545
ee1a93a
706c28a
ee1a93a
b01928e
ee1a93a
 
04020e2
ee1a93a
098406e
 
44835e2
ee1a93a
44835e2
ee1a93a
 
 
83a8fa3
fafb0f8
18c530d
 
 
1385c7e
b01928e
 
 
 
9859bfe
ee1a93a
44835e2
ee1a93a
 
 
b01928e
44835e2
3466ce8
04020e2
17f7916
04020e2
4ecfcc6
 
b01928e
 
 
ee1a93a
44835e2
ee1a93a
 
0c86f7b
44835e2
ee1a93a
 
 
b925e3e
ee1a93a
44835e2
ee1a93a
 
 
b01928e
ee1a93a
44835e2
ee1a93a
1385c7e
 
ee1a93a
791ae80
 
 
 
 
 
 
3fa82e0
791ae80
 
 
 
 
44835e2
ee1a93a
44835e2
ee1a93a
 
 
1074e84
1385c7e
1074e84
1385c7e
44835e2
ee1a93a
 
 
44835e2
ee1a93a
1385c7e
 
 
1074e84
ee1a93a
 
44835e2
ee1a93a
1385c7e
 
ee1a93a
1385c7e
ee1a93a
1385c7e
ee1a93a
 
 
44835e2
ee1a93a
1385c7e
 
 
ee1a93a
44835e2
 
 
ee1a93a
 
 
1385c7e
ee1a93a
44835e2
ee1a93a
1385c7e
 
 
 
 
ee1a93a
1074e84
ee1a93a
44835e2
ee1a93a
 
 
2431589
 
 
ee1a93a
2431589
ee1a93a
 
 
2431589
ee1a93a
44835e2
ee1a93a
 
 
 
 
2431589
17f7916
 
 
 
 
 
 
 
 
 
 
2431589
 
ee1a93a
2431589
ee1a93a
2431589
ee1a93a
 
 
1074e84
ee1a93a
1074e84
ee1a93a
 
83c496f
ee1a93a
ce0f545
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
---
license: cc-by-4.0
dataset_info:
- config_name: semantic-segmentation
  features:
  - name: image
    dtype: image
  - name: segmentation_mask
    dtype: image
  splits:
  - name: train
    num_bytes: 20684093931
    num_examples: 677
  dataset_size: 20684093931
  download_size: 20650350872
- config_name: animal-category-anomalies
  features:
  - name: crop
    dtype: image
  - name: animal_category
    dtype:
      class_label:
        names:
          '0': chicken
          '1': duck
          '2': rooster
  splits:
  - name: train
    num_bytes: 1925963361.27
    num_examples: 1270
  download_size: 1847129073
  dataset_size: 1925963361.27
- config_name: instance-segmentation
  features:
  - name: image
    dtype: image
  - name: instances
    list:
    - name: instance_mask
      dtype: image
  splits:
  - name: train
    num_bytes: 20716569484
    num_examples: 677
  download_size: 20653857847
  dataset_size: 20716569484
- config_name: full-dataset
  features:
  - name: image
    dtype: image
  - name: segmentation_mask
    dtype: image
  - name: coop
    dtype:
      class_label:
        names:
          '0': '1'
          '1': '2'
          '2': '3'
          '3': '4'
          '4': '5'
          '5': '6'
          '6': '7'
          '7': '8'
          '8': '9'
          '9': '10'
          '10': '11'
  - name: instances
    list:
    - name: crop
      dtype: image
    - name: instance_mask
      dtype: image
    - name: identity
      dtype:
        class_label:
          names:
            '0': Beate
            '1': Borghild
            '2': Eleonore
            '3': Mona
            '4': Henriette
            '5': Margit
            '6': Millie
            '7': Sigrun
            '8': Kristina
            '9': Unknown
            '10': Tina
            '11': Gretel
            '12': Lena
            '13': Yolkoono
            '14': Skimmy
            '15': Mavi
            '16': Mirmir
            '17': Nugget
            '18': Fernanda
            '19': Isolde
            '20': Mechthild
            '21': Brunhilde
            '22': Spiderman
            '23': Brownie
            '24': Camy
            '25': Samy
            '26': Yin
            '27': Yuriko
            '28': Renate
            '29': Regina
            '30': Monika
            '31': Heidi
            '32': Erna
            '33': Marina
            '34': Kathrin
            '35': Isabella
            '36': Amalia
            '37': Edeltraut
            '38': Erdmute
            '39': Oktavia
            '40': Siglinde
            '41': Ulrike
            '42': Hermine
            '43': Matilda
            '44': Chantal
            '45': Chayenne
            '46': Jaqueline
            '47': Mandy
            '48': Henny
            '49': Shady
            '50': Shorty
            '51': Evelyn
            '52': Marley
            '53': Elvis
            '54': Jackson
    - name: visibility
      dtype:
        class_label:
          names:
            '0': best
            '1': good
            '2': bad
    - name: animal_category
      dtype:
        class_label:
          names:
            '0': chicken
            '1': duck
            '2': rooster
  splits:
  - name: train
    num_bytes: 22621129760
    num_examples: 677
  download_size: 22521029844
  dataset_size: 22621129760
- config_name: chicken-re-id-best-visibility
  features:
  - name: crop
    dtype: image
  - name: identity
    dtype:
      class_label:
        names:
          '0': Beate
          '1': Borghild
          '2': Eleonore
          '3': Mona
          '4': Henriette
          '5': Margit
          '6': Millie
          '7': Sigrun
          '8': Kristina
          '9': Tina
          '10': Gretel
          '11': Lena
          '12': Yolkoono
          '13': Skimmy
          '14': Mavi
          '15': Mirmir
          '16': Nugget
          '17': Fernanda
          '18': Isolde
          '19': Mechthild
          '20': Brunhilde
          '21': Spiderman
          '22': Brownie
          '23': Camy
          '24': Samy
          '25': Yin
          '26': Yuriko
          '27': Renate
          '28': Regina
          '29': Monika
          '30': Heidi
          '31': Erna
          '32': Marina
          '33': Kathrin
          '34': Isabella
          '35': Amalia
          '36': Edeltraut
          '37': Erdmute
          '38': Oktavia
          '39': Siglinde
          '40': Ulrike
          '41': Hermine
          '42': Matilda
          '43': Chantal
          '44': Chayenne
          '45': Jaqueline
          '46': Mandy
          '47': Henny
          '48': Shady
          '49': Shorty
  splits:
  - name: train
    num_bytes: 1116940840
    num_examples: 630
  - name: test
    num_bytes: 282284300
    num_examples: 163
  download_size: 1396952370
  dataset_size: 1399225140
- config_name: chicken-re-id-all-visibility
  features:
  - name: crop
    dtype: image
  - name: identity
    dtype:
      class_label:
        names:
          '0': Beate
          '1': Borghild
          '2': Eleonore
          '3': Mona
          '4': Henriette
          '5': Margit
          '6': Millie
          '7': Sigrun
          '8': Kristina
          '9': Tina
          '10': Gretel
          '11': Lena
          '12': Yolkoono
          '13': Skimmy
          '14': Mavi
          '15': Mirmir
          '16': Nugget
          '17': Fernanda
          '18': Isolde
          '19': Mechthild
          '20': Brunhilde
          '21': Spiderman
          '22': Brownie
          '23': Camy
          '24': Samy
          '25': Yin
          '26': Yuriko
          '27': Renate
          '28': Regina
          '29': Monika
          '30': Heidi
          '31': Erna
          '32': Marina
          '33': Kathrin
          '34': Isabella
          '35': Amalia
          '36': Edeltraut
          '37': Erdmute
          '38': Oktavia
          '39': Siglinde
          '40': Ulrike
          '41': Hermine
          '42': Matilda
          '43': Chantal
          '44': Chayenne
          '45': Jaqueline
          '46': Mandy
          '47': Henny
          '48': Shady
          '49': Shorty
  splits:
  - name: train
    num_bytes: 1440206054
    num_examples: 916
  - name: test
    num_bytes: 356817885
    num_examples: 230
  download_size: 1794292959
  dataset_size: 1797023939
configs:
- config_name: full-dataset
  data_files:
  - split: train
    path: full-dataset/train-*
- config_name: semantic-segmentation
  data_files:
  - split: train
    path: semantic-segmentation/train-*
- config_name: instance-segmentation
  data_files:
  - split: train
    path: instance-segmentation/train-*
- config_name: animal-category-anomalies
  data_files:
  - split: train
    path: animal-category-anomalies/train-*
- config_name: chicken-re-id-best-visibility
  default: true
  data_files:
  - split: train
    path: chicken-re-id-best-visibility/train-*
  - split: test
    path: chicken-re-id-best-visibility/test-*
- config_name: chicken-re-id-all-visibility
  data_files:
  - split: train
    path: chicken-re-id-all-visibility/train-*
  - split: test
    path: chicken-re-id-all-visibility/test-*
language:
- en
tags:
- re-identification
- chicken
- closed-set
- instance segmentation
- semantic segmentation
- poultry
- re-id
- croissant
pretty_name: Chicks4FreeID
---

# Dataset Card for Chicks4FreeID

<!-- Provide a quick summary of the dataset. -->
The very first publicly available dataset for chicken re-identification.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6638cca0fb1223a10d83aed9/EtoFByN789gTxYuZj909b.png)

## 1 Dataset Details

### 1.1 Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

The Chicks4FreeID dataset contains top-down view images of individually segmented and annotated chickens (with roosters and ducks also possibly present and labeled as such). 11 different coops with 54 individuals were visited for manual data collection. Each of the 677 images depicts at least one chicken. The identities of the 50 chickens, 2 roosters and 2 ducks were annotated for a total of 1270 animal instances. Annotation additionally contains visibility ratings of "best", "good", and "bad" for each animal instance. Besides chicken re-identification ,the curated dataset also support semantic and instance segmentation. Corresponding masks for these tasks are provided.

> [!IMPORTANT]
> For a detailed description and documentation please read the paper and the supplementary material.

- **Curated by:** Daria Kern and Tobias Schiele
<!--- **Funded by [optional]:** [More Information Needed]-->
<!---- **Shared by [optional]:** [More Information Needed]-->
- **Language(s) (NLP):** English
- **License:** CC-BY-4.0
  

### 1.2 Dataset Sources

<!-- Provide the basic links for the dataset. -->

**Code:** [GitHub](https://github.com/DariaKern/Chicks4FreeID)

**Paper:** [Towards Automated Chicken Monitoring: Dataset and Machine Learning Methods for Visual, Noninvasive Reidentification](https://doi.org/10.3390/ani15010001)

**Supplementary material:** coming soon...

**DOI:** [https://doi.org/10.57967/hf/2345](https://doi.org/10.57967/hf/2345)

<!--- **Repository:** https://github.com/DariaKern/Chicks4FreeID -->
<!--- **Paper [optional]:** [More Information Needed]-->
<!---- **Demo [optional]:** [More Information Needed]-->

## 2 Uses

<!-- Address questions around how the dataset is intended to be used. -->

### 2.1 Direct Use

<!-- This section describes suitable use cases for the dataset. -->

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6638cca0fb1223a10d83aed9/h2DOZNjB_HMVcy6MVYb-c.png)

### 2.2 Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

Do not use for re-identification of roosters or ducks.

## 3 Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure--> 
<!-- such as criteria used to create the splits, relationships between data points, etc. -->

Modalities:
* 677 images
* 1270 preprocessed cut-out crops 
* 1270 binary instance segmentation masks
* 677 color-Coded semantic segmentation masks
  (classes: chicken, rooster, duck, background)

Annotations:
* Animal category (chicken, rooster, duck)
* Identity (54 unique names)
* Coop (1-11)
* Visibility (best, good, bad)

## 4 Dataset Creation

### 4.1 Curation Rationale

<!-- Motivation for the creation of this dataset. -->

The Chicks4FreeID dataset was created specifically for the task of chicken re-identification - i.e., recognizing the identity of an individual chicken in an image. There were two primary motivations for developing this dataset. First, there is a significant need for publicly available and well-annotated datasets in the field of animal re-identification. Second, there was a notable gap, as no such dataset existed for chickens prior to this effort.

However, the dataset is multipurpose and can also be used for semantic segmentation, instance segmentation, or even anomaly detection. It was structured, annotated, and prepared to support these additional tasks effectively.

### 4.2 Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

#### 4.2.1 Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria,  -->
<!-- filtering and normalization methods, tools and libraries used, etc. -->

Data was collected manually using two models of cameras: the “Sony CyberShot DSC-RX100 VI”130 and the “Sony CyberShot DSC-RX100 I". The identities of the subjects were meticulously studied prior to photography, closely monitored throughout the image capture process, and ultimately assigned by a human annotator. No algorithms were used. During photography, the focus was always on a single chicken (the chickens were photographed sequentially, not randomly), while other individuals were able to enter the frame as well. The data collection took approximately one year. However, all images of a coop where always taken within a single day. In other words, all photos of an individual were taken on the same day. 


#### 4.2.2 Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. 
It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

Daria Kern collected the data.

<!-- ### Annotations [optional]-->

<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->

#### 4.2.3 Annotation process

<!-- This section describes the annotation process such as annotation tools used in the process, 
the amount of data annotated, annotation guidelines provided to the annotators, 
interannotator statistics, annotation validation, etc. -->

We utilized Labelbox under a free educational license for manual data annotation.

#### 4.2.4 Who are the annotators?

<!-- This section describes the people or systems who created the annotations. -->

Daria Kern annotated the data.

#### 4.2.5 Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, 
sensitive, or private (e.g., data that reveals addresses, 
uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, 
religious beliefs, political opinions, financial or health data, etc.). 
If efforts were made to anonymize the data, describe the anonymization process. -->

The dataset does not contain any personal or sensitive information. It contains images of free-range chickens.

## 5 Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

* Changes in appearance over time were not captured as all images of a given chicken were taken on the same day
* Despite the variability, chicken breeds included in the dataset are not exhaustive
* Be aware of class imbalances: the number of instances ranges from 4 to 27 in the "best" visibility subset

<!-- ### 5.1 Recommendations-->

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

<!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.-->

## 6 Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```tex
@Article{ani15010001,
AUTHOR = {Kern, Daria and Schiele, Tobias and Klauck, Ulrich and Ingabire, Winfred},
TITLE = {Towards Automated Chicken Monitoring: Dataset and Machine Learning Methods for Visual, Noninvasive Reidentification},
JOURNAL = {Animals},
VOLUME = {15},
YEAR = {2025},
NUMBER = {1},
ARTICLE-NUMBER = {1},
URL = {https://www.mdpi.com/2076-2615/15/1/1},
ISSN = {2076-2615},
DOI = {10.3390/ani15010001}
}
```

<!-- **APA:** -->

<!-- ## 7 Glossary -->

<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->

<!--## More Information [optional] -->

<!-- ## Dataset Card Authors [optional] -->


## 7 Dataset Card Contact

[email protected]