File size: 15,441 Bytes
706c28a 72535ea ee1a93a 72535ea ee1a93a f06dbe5 ee1a93a ce0f545 ee1a93a 706c28a ee1a93a b01928e ee1a93a 04020e2 ee1a93a 098406e 44835e2 ee1a93a 44835e2 ee1a93a 83a8fa3 fafb0f8 18c530d 1385c7e b01928e 9859bfe ee1a93a 44835e2 ee1a93a b01928e 44835e2 3466ce8 04020e2 17f7916 04020e2 4ecfcc6 b01928e ee1a93a 44835e2 ee1a93a 0c86f7b 44835e2 ee1a93a b925e3e ee1a93a 44835e2 ee1a93a b01928e ee1a93a 44835e2 ee1a93a 1385c7e ee1a93a 791ae80 3fa82e0 791ae80 44835e2 ee1a93a 44835e2 ee1a93a 1074e84 1385c7e 1074e84 1385c7e 44835e2 ee1a93a 44835e2 ee1a93a 1385c7e 1074e84 ee1a93a 44835e2 ee1a93a 1385c7e ee1a93a 1385c7e ee1a93a 1385c7e ee1a93a 44835e2 ee1a93a 1385c7e ee1a93a 44835e2 ee1a93a 1385c7e ee1a93a 44835e2 ee1a93a 1385c7e ee1a93a 1074e84 ee1a93a 44835e2 ee1a93a 2431589 ee1a93a 2431589 ee1a93a 2431589 ee1a93a 44835e2 ee1a93a 2431589 17f7916 2431589 ee1a93a 2431589 ee1a93a 2431589 ee1a93a 1074e84 ee1a93a 1074e84 ee1a93a 83c496f ee1a93a ce0f545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
---
license: cc-by-4.0
dataset_info:
- config_name: semantic-segmentation
features:
- name: image
dtype: image
- name: segmentation_mask
dtype: image
splits:
- name: train
num_bytes: 20684093931
num_examples: 677
dataset_size: 20684093931
download_size: 20650350872
- config_name: animal-category-anomalies
features:
- name: crop
dtype: image
- name: animal_category
dtype:
class_label:
names:
'0': chicken
'1': duck
'2': rooster
splits:
- name: train
num_bytes: 1925963361.27
num_examples: 1270
download_size: 1847129073
dataset_size: 1925963361.27
- config_name: instance-segmentation
features:
- name: image
dtype: image
- name: instances
list:
- name: instance_mask
dtype: image
splits:
- name: train
num_bytes: 20716569484
num_examples: 677
download_size: 20653857847
dataset_size: 20716569484
- config_name: full-dataset
features:
- name: image
dtype: image
- name: segmentation_mask
dtype: image
- name: coop
dtype:
class_label:
names:
'0': '1'
'1': '2'
'2': '3'
'3': '4'
'4': '5'
'5': '6'
'6': '7'
'7': '8'
'8': '9'
'9': '10'
'10': '11'
- name: instances
list:
- name: crop
dtype: image
- name: instance_mask
dtype: image
- name: identity
dtype:
class_label:
names:
'0': Beate
'1': Borghild
'2': Eleonore
'3': Mona
'4': Henriette
'5': Margit
'6': Millie
'7': Sigrun
'8': Kristina
'9': Unknown
'10': Tina
'11': Gretel
'12': Lena
'13': Yolkoono
'14': Skimmy
'15': Mavi
'16': Mirmir
'17': Nugget
'18': Fernanda
'19': Isolde
'20': Mechthild
'21': Brunhilde
'22': Spiderman
'23': Brownie
'24': Camy
'25': Samy
'26': Yin
'27': Yuriko
'28': Renate
'29': Regina
'30': Monika
'31': Heidi
'32': Erna
'33': Marina
'34': Kathrin
'35': Isabella
'36': Amalia
'37': Edeltraut
'38': Erdmute
'39': Oktavia
'40': Siglinde
'41': Ulrike
'42': Hermine
'43': Matilda
'44': Chantal
'45': Chayenne
'46': Jaqueline
'47': Mandy
'48': Henny
'49': Shady
'50': Shorty
'51': Evelyn
'52': Marley
'53': Elvis
'54': Jackson
- name: visibility
dtype:
class_label:
names:
'0': best
'1': good
'2': bad
- name: animal_category
dtype:
class_label:
names:
'0': chicken
'1': duck
'2': rooster
splits:
- name: train
num_bytes: 22621129760
num_examples: 677
download_size: 22521029844
dataset_size: 22621129760
- config_name: chicken-re-id-best-visibility
features:
- name: crop
dtype: image
- name: identity
dtype:
class_label:
names:
'0': Beate
'1': Borghild
'2': Eleonore
'3': Mona
'4': Henriette
'5': Margit
'6': Millie
'7': Sigrun
'8': Kristina
'9': Tina
'10': Gretel
'11': Lena
'12': Yolkoono
'13': Skimmy
'14': Mavi
'15': Mirmir
'16': Nugget
'17': Fernanda
'18': Isolde
'19': Mechthild
'20': Brunhilde
'21': Spiderman
'22': Brownie
'23': Camy
'24': Samy
'25': Yin
'26': Yuriko
'27': Renate
'28': Regina
'29': Monika
'30': Heidi
'31': Erna
'32': Marina
'33': Kathrin
'34': Isabella
'35': Amalia
'36': Edeltraut
'37': Erdmute
'38': Oktavia
'39': Siglinde
'40': Ulrike
'41': Hermine
'42': Matilda
'43': Chantal
'44': Chayenne
'45': Jaqueline
'46': Mandy
'47': Henny
'48': Shady
'49': Shorty
splits:
- name: train
num_bytes: 1116940840
num_examples: 630
- name: test
num_bytes: 282284300
num_examples: 163
download_size: 1396952370
dataset_size: 1399225140
- config_name: chicken-re-id-all-visibility
features:
- name: crop
dtype: image
- name: identity
dtype:
class_label:
names:
'0': Beate
'1': Borghild
'2': Eleonore
'3': Mona
'4': Henriette
'5': Margit
'6': Millie
'7': Sigrun
'8': Kristina
'9': Tina
'10': Gretel
'11': Lena
'12': Yolkoono
'13': Skimmy
'14': Mavi
'15': Mirmir
'16': Nugget
'17': Fernanda
'18': Isolde
'19': Mechthild
'20': Brunhilde
'21': Spiderman
'22': Brownie
'23': Camy
'24': Samy
'25': Yin
'26': Yuriko
'27': Renate
'28': Regina
'29': Monika
'30': Heidi
'31': Erna
'32': Marina
'33': Kathrin
'34': Isabella
'35': Amalia
'36': Edeltraut
'37': Erdmute
'38': Oktavia
'39': Siglinde
'40': Ulrike
'41': Hermine
'42': Matilda
'43': Chantal
'44': Chayenne
'45': Jaqueline
'46': Mandy
'47': Henny
'48': Shady
'49': Shorty
splits:
- name: train
num_bytes: 1440206054
num_examples: 916
- name: test
num_bytes: 356817885
num_examples: 230
download_size: 1794292959
dataset_size: 1797023939
configs:
- config_name: full-dataset
data_files:
- split: train
path: full-dataset/train-*
- config_name: semantic-segmentation
data_files:
- split: train
path: semantic-segmentation/train-*
- config_name: instance-segmentation
data_files:
- split: train
path: instance-segmentation/train-*
- config_name: animal-category-anomalies
data_files:
- split: train
path: animal-category-anomalies/train-*
- config_name: chicken-re-id-best-visibility
default: true
data_files:
- split: train
path: chicken-re-id-best-visibility/train-*
- split: test
path: chicken-re-id-best-visibility/test-*
- config_name: chicken-re-id-all-visibility
data_files:
- split: train
path: chicken-re-id-all-visibility/train-*
- split: test
path: chicken-re-id-all-visibility/test-*
language:
- en
tags:
- re-identification
- chicken
- closed-set
- instance segmentation
- semantic segmentation
- poultry
- re-id
- croissant
pretty_name: Chicks4FreeID
---
# Dataset Card for Chicks4FreeID
<!-- Provide a quick summary of the dataset. -->
The very first publicly available dataset for chicken re-identification.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6638cca0fb1223a10d83aed9/EtoFByN789gTxYuZj909b.png)
## 1 Dataset Details
### 1.1 Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
The Chicks4FreeID dataset contains top-down view images of individually segmented and annotated chickens (with roosters and ducks also possibly present and labeled as such). 11 different coops with 54 individuals were visited for manual data collection. Each of the 677 images depicts at least one chicken. The identities of the 50 chickens, 2 roosters and 2 ducks were annotated for a total of 1270 animal instances. Annotation additionally contains visibility ratings of "best", "good", and "bad" for each animal instance. Besides chicken re-identification ,the curated dataset also support semantic and instance segmentation. Corresponding masks for these tasks are provided.
> [!IMPORTANT]
> For a detailed description and documentation please read the paper and the supplementary material.
- **Curated by:** Daria Kern and Tobias Schiele
<!--- **Funded by [optional]:** [More Information Needed]-->
<!---- **Shared by [optional]:** [More Information Needed]-->
- **Language(s) (NLP):** English
- **License:** CC-BY-4.0
### 1.2 Dataset Sources
<!-- Provide the basic links for the dataset. -->
**Code:** [GitHub](https://github.com/DariaKern/Chicks4FreeID)
**Paper:** [Towards Automated Chicken Monitoring: Dataset and Machine Learning Methods for Visual, Noninvasive Reidentification](https://doi.org/10.3390/ani15010001)
**Supplementary material:** coming soon...
**DOI:** [https://doi.org/10.57967/hf/2345](https://doi.org/10.57967/hf/2345)
<!--- **Repository:** https://github.com/DariaKern/Chicks4FreeID -->
<!--- **Paper [optional]:** [More Information Needed]-->
<!---- **Demo [optional]:** [More Information Needed]-->
## 2 Uses
<!-- Address questions around how the dataset is intended to be used. -->
### 2.1 Direct Use
<!-- This section describes suitable use cases for the dataset. -->
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6638cca0fb1223a10d83aed9/h2DOZNjB_HMVcy6MVYb-c.png)
### 2.2 Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
Do not use for re-identification of roosters or ducks.
## 3 Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure-->
<!-- such as criteria used to create the splits, relationships between data points, etc. -->
Modalities:
* 677 images
* 1270 preprocessed cut-out crops
* 1270 binary instance segmentation masks
* 677 color-Coded semantic segmentation masks
(classes: chicken, rooster, duck, background)
Annotations:
* Animal category (chicken, rooster, duck)
* Identity (54 unique names)
* Coop (1-11)
* Visibility (best, good, bad)
## 4 Dataset Creation
### 4.1 Curation Rationale
<!-- Motivation for the creation of this dataset. -->
The Chicks4FreeID dataset was created specifically for the task of chicken re-identification - i.e., recognizing the identity of an individual chicken in an image. There were two primary motivations for developing this dataset. First, there is a significant need for publicly available and well-annotated datasets in the field of animal re-identification. Second, there was a notable gap, as no such dataset existed for chickens prior to this effort.
However, the dataset is multipurpose and can also be used for semantic segmentation, instance segmentation, or even anomaly detection. It was structured, annotated, and prepared to support these additional tasks effectively.
### 4.2 Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### 4.2.1 Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, -->
<!-- filtering and normalization methods, tools and libraries used, etc. -->
Data was collected manually using two models of cameras: the “Sony CyberShot DSC-RX100 VI”130 and the “Sony CyberShot DSC-RX100 I". The identities of the subjects were meticulously studied prior to photography, closely monitored throughout the image capture process, and ultimately assigned by a human annotator. No algorithms were used. During photography, the focus was always on a single chicken (the chickens were photographed sequentially, not randomly), while other individuals were able to enter the frame as well. The data collection took approximately one year. However, all images of a coop where always taken within a single day. In other words, all photos of an individual were taken on the same day.
#### 4.2.2 Who are the source data producers?
<!-- This section describes the people or systems who originally created the data.
It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
Daria Kern collected the data.
<!-- ### Annotations [optional]-->
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### 4.2.3 Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process,
the amount of data annotated, annotation guidelines provided to the annotators,
interannotator statistics, annotation validation, etc. -->
We utilized Labelbox under a free educational license for manual data annotation.
#### 4.2.4 Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
Daria Kern annotated the data.
#### 4.2.5 Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal,
sensitive, or private (e.g., data that reveals addresses,
uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations,
religious beliefs, political opinions, financial or health data, etc.).
If efforts were made to anonymize the data, describe the anonymization process. -->
The dataset does not contain any personal or sensitive information. It contains images of free-range chickens.
## 5 Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
* Changes in appearance over time were not captured as all images of a given chicken were taken on the same day
* Despite the variability, chicken breeds included in the dataset are not exhaustive
* Be aware of class imbalances: the number of instances ranges from 4 to 27 in the "best" visibility subset
<!-- ### 5.1 Recommendations-->
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
<!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.-->
## 6 Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```tex
@Article{ani15010001,
AUTHOR = {Kern, Daria and Schiele, Tobias and Klauck, Ulrich and Ingabire, Winfred},
TITLE = {Towards Automated Chicken Monitoring: Dataset and Machine Learning Methods for Visual, Noninvasive Reidentification},
JOURNAL = {Animals},
VOLUME = {15},
YEAR = {2025},
NUMBER = {1},
ARTICLE-NUMBER = {1},
URL = {https://www.mdpi.com/2076-2615/15/1/1},
ISSN = {2076-2615},
DOI = {10.3390/ani15010001}
}
```
<!-- **APA:** -->
<!-- ## 7 Glossary -->
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
<!--## More Information [optional] -->
<!-- ## Dataset Card Authors [optional] -->
## 7 Dataset Card Contact
[email protected] |