|
from pathlib import Path
|
|
from typing import Set
|
|
|
|
from datasets import DatasetBuilder, GeneratorBasedBuilder, DatasetInfo, Features, Image, ClassLabel, Array3D, DownloadManager, SplitGenerator, BuilderConfig, Version
|
|
import numpy as np
|
|
import datasets
|
|
|
|
VERSION = "v1_240507_SMALL"
|
|
HF_VERSION = "1.0.0"
|
|
|
|
|
|
full_dataset_name = "full-dataset"
|
|
semantic_segmentation_name = "semantic-segmentation"
|
|
instance_segmentation_name = "instance-segmentation"
|
|
animal_category_anomoalies_name = "animal-category-anomalies"
|
|
re_id_best_name = "chicken-re-id-best-visibility"
|
|
|
|
|
|
re_id_full_name = "chicken-re-id-all-visibility"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ontologies = {
|
|
"v1_240507":
|
|
{'tools': [{'classifications': [{'instructions': 'coop',
|
|
'options': [{'label': '10'},
|
|
{'label': '1'},
|
|
{'label': '2'},
|
|
{'label': '3'},
|
|
{'label': '4'},
|
|
{'label': '5'},
|
|
{'label': '6'},
|
|
{'label': '7'},
|
|
{'label': '8'},
|
|
{'label': '9'},
|
|
{'label': '11'}],
|
|
'required': True,
|
|
'type': 'radio'},
|
|
{'instructions': 'identity',
|
|
'options': [{'label': 'Beate'},
|
|
{'label': 'Borghild'},
|
|
{'label': 'Eleonore'},
|
|
{'label': 'Mona'},
|
|
{'label': 'Henriette'},
|
|
{'label': 'Margit'},
|
|
{'label': 'Millie'},
|
|
{'label': 'Sigrun'},
|
|
{'label': 'Kristina'},
|
|
{'label': 'Unknown'},
|
|
{'label': 'Tina'},
|
|
{'label': 'Gretel'},
|
|
{'label': 'Lena'},
|
|
{'label': 'Yolkoono'},
|
|
{'label': 'Skimmy'},
|
|
{'label': 'Mavi'},
|
|
{'label': 'Mirmir'},
|
|
{'label': 'Nugget'},
|
|
{'label': 'Fernanda'},
|
|
{'label': 'Isolde'},
|
|
{'label': 'Mechthild'},
|
|
{'label': 'Brunhilde'},
|
|
{'label': 'Spiderman'},
|
|
{'label': 'Brownie'},
|
|
{'label': 'Camy'},
|
|
{'label': 'Samy'},
|
|
{'label': 'Yin'},
|
|
{'label': 'Yuriko'},
|
|
{'label': 'Renate'},
|
|
{'label': 'Regina'},
|
|
{'label': 'Monika'},
|
|
{'label': 'Heidi'},
|
|
{'label': 'Erna'},
|
|
{'label': 'Marina'},
|
|
{'label': 'Kathrin'},
|
|
{'label': 'Isabella'},
|
|
{'label': 'Amalia'},
|
|
{'label': 'Edeltraut'},
|
|
{'label': 'Erdmute'},
|
|
{'label': 'Oktavia'},
|
|
{'label': 'Siglinde'},
|
|
{'label': 'Ulrike'},
|
|
{'label': 'Hermine'},
|
|
{'label': 'Matilda'},
|
|
{'label': 'Chantal'},
|
|
{'label': 'Chayenne'},
|
|
{'label': 'Jaqueline'},
|
|
{'label': 'Mandy'},
|
|
{'label': 'Henny'},
|
|
{'label': 'Shady'},
|
|
{'label': 'Shorty'}],
|
|
'required': True,
|
|
'type': 'radio'},
|
|
{'instructions': 'visibility',
|
|
'options': [{'label': 'best'},
|
|
{'label': 'good'},
|
|
{'label': 'bad'}],
|
|
'required': True,
|
|
'type': 'radio'}],
|
|
'color': '#1e1cff',
|
|
'name': 'chicken',
|
|
'required': False,
|
|
'tool': 'superpixel'},
|
|
{'color': '#FF34FF',
|
|
'name': 'background',
|
|
'required': False,
|
|
'tool': 'superpixel'},
|
|
{'classifications': [{'instructions': 'coop',
|
|
'options': [{'label': '1'},
|
|
{'label': '2'},
|
|
{'label': '3'},
|
|
{'label': '4'},
|
|
{'label': '5'},
|
|
{'label': '6'},
|
|
{'label': '7'},
|
|
{'label': '8'},
|
|
{'label': '9'},
|
|
{'label': '10'},
|
|
{'label': '11'}],
|
|
'required': True,
|
|
'type': 'radio'},
|
|
{'instructions': 'identity',
|
|
'options': [{'label': 'Evelyn'},
|
|
{'label': 'Marley'}],
|
|
'required': True,
|
|
'type': 'radio'},
|
|
{'instructions': 'visibility',
|
|
'options': [{'label': 'best'},
|
|
{'label': 'good'},
|
|
{'label': 'bad'}],
|
|
'required': True,
|
|
'type': 'radio'}],
|
|
'color': '#FF4A46',
|
|
'name': 'duck',
|
|
'required': False,
|
|
'tool': 'superpixel'},
|
|
{'classifications': [{'instructions': 'coop',
|
|
'options': [{'label': '1'},
|
|
{'label': '2'},
|
|
{'label': '3'},
|
|
{'label': '4'},
|
|
{'label': '5'},
|
|
{'label': '6'},
|
|
{'label': '7'},
|
|
{'label': '8'},
|
|
{'label': '9'},
|
|
{'label': '10'},
|
|
{'label': '11'}],
|
|
'required': True,
|
|
'type': 'radio'},
|
|
{'instructions': 'identity',
|
|
'options': [{'label': 'Elvis'},
|
|
{'label': 'Jackson'}],
|
|
'required': True,
|
|
'type': 'radio'},
|
|
{'instructions': 'visibility',
|
|
'options': [{'label': 'best'},
|
|
{'label': 'good'},
|
|
{'label': 'bad'}],
|
|
'required': True,
|
|
'type': 'radio'}],
|
|
'color': '#ff0000',
|
|
'name': 'rooster',
|
|
'required': False,
|
|
'tool': 'superpixel'}]}
|
|
}
|
|
|
|
|
|
ontologies["v1_240507_SMALL"] = ontologies["v1_240507"]
|
|
|
|
|
|
class Ontology:
|
|
ontology: dict = None
|
|
def __init__(self, version_name: str):
|
|
self.ontology: dict = ontologies[version_name]
|
|
|
|
|
|
def names(self, class_name, tool_name=None, drop_unkown=False):
|
|
"""
|
|
Returns a list of all possible names for a given category (accross all tools)
|
|
"""
|
|
if class_name == "animal_category":
|
|
return list({tool["name"] for tool in self.ontology["tools"]} - {"background"})
|
|
|
|
result = set()
|
|
for tool in self.ontology["tools"]:
|
|
if "classifications" in tool:
|
|
for classification in tool["classifications"]:
|
|
if classification["instructions"] == class_name and (tool_name is None or tool_name == tool["name"]):
|
|
result.update({option["label"] for option in classification["options"] if not (drop_unkown and option["label"] == "Unknown")})
|
|
return list(result)
|
|
|
|
def get_color_map(self):
|
|
"""
|
|
Returns a dictionary mapping class names to their respective colors
|
|
"""
|
|
return {tool["name"]: tool["color"] for tool in self.ontology["tools"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ontology = Ontology(VERSION)
|
|
|
|
|
|
IMAGE = "image"
|
|
image_feature = {IMAGE: Image()}
|
|
|
|
SEGMENTATION_MAKS = "segmentation_mask"
|
|
segmentation_mask_feature = {SEGMENTATION_MAKS: Image()}
|
|
|
|
INSTANCE_MASK = "instance_mask"
|
|
instance_mask_feature = {INSTANCE_MASK: Image()}
|
|
|
|
CROP = "crop"
|
|
crop_feature = {CROP: Image()}
|
|
|
|
ID = "identity"
|
|
identity_feature = {ID: ClassLabel(names=ontology.names(ID))}
|
|
chicken_only_identitiy_feature = {ID: ClassLabel(names=ontology.names(ID, "chicken", drop_unkown=True))}
|
|
|
|
VISIBILITY = "visibility"
|
|
visibility_feature = {VISIBILITY: ClassLabel(names=ontology.names(VISIBILITY))}
|
|
|
|
COOP = "coop"
|
|
coop_feature = {COOP: ClassLabel(names=ontology.names(COOP))}
|
|
|
|
CATEGORY = "animal_category"
|
|
animal_category_feature = {CATEGORY: ClassLabel(names=ontology.names(CATEGORY))}
|
|
|
|
INSTANCES = "instances"
|
|
instance_features = {
|
|
**crop_feature,
|
|
**instance_mask_feature,
|
|
**identity_feature,
|
|
**visibility_feature,
|
|
**animal_category_feature,
|
|
}
|
|
|
|
all_features = {
|
|
**image_feature,
|
|
**segmentation_mask_feature,
|
|
**coop_feature,
|
|
INSTANCES: [instance_features],
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def name_to_dict(filename: str):
|
|
"""
|
|
Converts a filename to a dictionary object by splitting the filename by underscores and using the even indices as keys and the odd indices as values.
|
|
"""
|
|
return {filename.split('_')[i]: filename.split('_')[i + 1] for i in range(0, len(filename.split('_')) - 1, 2)}
|
|
|
|
|
|
class ChicksDataset(GeneratorBasedBuilder):
|
|
BUILDER_CONFIGS = [
|
|
BuilderConfig(name=full_dataset_name, version=Version(HF_VERSION), description="The complete dataset including all features and image types. Includes all coops, visibility ratings, identities, and animal categories, as well as segmentation masks and instance masks."),
|
|
BuilderConfig(name=semantic_segmentation_name, version=Version(HF_VERSION), description="Includes images and color-coded segmentation masks."),
|
|
BuilderConfig(name=instance_segmentation_name, version=Version(HF_VERSION), description="Includes images and a corresponding sequence of binary instance segmentation masks for each instance on the image."),
|
|
BuilderConfig(name=animal_category_anomoalies_name, version=Version(HF_VERSION), description="Includes images of mostly chicken, but also some roosters and ducks, which make up the anomalies in the dataset."),
|
|
BuilderConfig(name=re_id_best_name, version=Version(HF_VERSION), description="Includes crops of chickens which have the best visibility rating for re-identification."),
|
|
|
|
|
|
BuilderConfig(name=re_id_full_name, version=Version(HF_VERSION), description="Includes crops of chickens with all visibilities for re-identification without any filtering on visibility rating."),
|
|
]
|
|
|
|
|
|
def _info(self, *args, **kwargs):
|
|
|
|
if self.config.name == full_dataset_name:
|
|
return DatasetInfo(
|
|
features=Features(all_features),
|
|
)
|
|
|
|
elif self.config.name in [
|
|
re_id_full_name, re_id_best_name,
|
|
|
|
]:
|
|
return DatasetInfo(
|
|
features=Features({
|
|
**crop_feature,
|
|
**chicken_only_identitiy_feature,
|
|
}),
|
|
supervised_keys=(
|
|
CROP,
|
|
ID,
|
|
),
|
|
)
|
|
|
|
|
|
elif self.config.name == semantic_segmentation_name:
|
|
return DatasetInfo(
|
|
features=Features({
|
|
**image_feature,
|
|
**segmentation_mask_feature,
|
|
}),
|
|
supervised_keys=(
|
|
IMAGE,
|
|
SEGMENTATION_MAKS,
|
|
)
|
|
)
|
|
|
|
elif self.config.name == instance_segmentation_name:
|
|
return DatasetInfo(
|
|
features=Features({
|
|
**image_feature,
|
|
INSTANCES: [instance_mask_feature],
|
|
}),
|
|
supervised_keys=(
|
|
IMAGE,
|
|
INSTANCES,
|
|
)
|
|
)
|
|
|
|
elif self.config.name == animal_category_anomoalies_name:
|
|
return DatasetInfo(
|
|
features=Features({
|
|
**crop_feature,
|
|
**animal_category_feature,
|
|
}),
|
|
supervised_keys=(
|
|
CROP,
|
|
CATEGORY
|
|
)
|
|
)
|
|
|
|
def _split_generators(self, dl_manager: DownloadManager):
|
|
URL = f"https://huggingface.co/datasets/dariakern/Chicks4FreeID/resolve/main/{VERSION}.zip?download=true"
|
|
base_path = Path(dl_manager.download_and_extract(URL))
|
|
|
|
|
|
if self.config.name in [
|
|
re_id_full_name,
|
|
re_id_best_name
|
|
]:
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
|
|
all_crops = sorted([
|
|
crop_file
|
|
for crop_file
|
|
in base_path.rglob(f"**/{VERSION}/reId/chicken/**/*crop_*.png")
|
|
if "Unknown" not in crop_file.parts
|
|
])
|
|
|
|
identities = [name_to_dict(crop.stem)[ID] for crop in all_crops]
|
|
|
|
if VERSION == "v1_240507_SMALL":
|
|
train_crops, test_crops = all_crops, all_crops
|
|
else:
|
|
|
|
train_crops, test_crops, _, _ = train_test_split(
|
|
all_crops, identities, test_size=0.2, stratify=identities, shuffle=True, random_state=42
|
|
)
|
|
|
|
return [
|
|
SplitGenerator(
|
|
gen_kwargs={"base_path": base_path, "split": set(train_crops)},
|
|
name=datasets.Split.TRAIN,
|
|
),
|
|
SplitGenerator(
|
|
gen_kwargs={"base_path": base_path, "split": set(test_crops)},
|
|
name=datasets.Split.TEST,
|
|
)
|
|
]
|
|
else:
|
|
return [
|
|
SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={"base_path": base_path, "split": None})
|
|
]
|
|
|
|
|
|
def _generate_all(self, base_path: Path, split: Set[Path]=None):
|
|
"""
|
|
Generates all examples for the dataset, including all features.
|
|
|
|
Args:
|
|
base_path (Path): The base path to the dataset
|
|
split (Set[Path]): The paths to all instance crops to include in the current dataset
|
|
"""
|
|
img_dir = base_path / f"{VERSION}/images"
|
|
mask_dir = base_path / f"{VERSION}/masks"
|
|
reid_dir = base_path / f"{VERSION}/reId"
|
|
|
|
|
|
for img_file in img_dir.iterdir():
|
|
image_id = img_file.stem
|
|
image_path = img_file
|
|
segmentation_mask_path = mask_dir / f"{image_id}_segmentationMask.png"
|
|
instance_masks = list(mask_dir.rglob(f"{image_id}_instanceMask_*.png"))
|
|
instance_crops = list(reid_dir.rglob(f"**/{image_id}_crop_*.png"))
|
|
|
|
|
|
assert len(instance_masks) == len(instance_crops) and len(instance_masks) > 0
|
|
|
|
|
|
if split is not None:
|
|
instance_crops = [crop for crop in instance_crops if crop in split]
|
|
|
|
instance_data = []
|
|
infos = {}
|
|
for instance_mask_path, crop_path in zip(instance_masks, instance_crops):
|
|
infos = name_to_dict(crop_path.stem)
|
|
instance_data.append({
|
|
INSTANCE_MASK: str(instance_mask_path),
|
|
CROP: str(crop_path),
|
|
VISIBILITY: infos[VISIBILITY],
|
|
ID: infos[ID],
|
|
CATEGORY: crop_path.relative_to(reid_dir).parts[0],
|
|
})
|
|
|
|
|
|
if instance_data:
|
|
yield image_id, {
|
|
IMAGE: str(image_path),
|
|
SEGMENTATION_MAKS: str(segmentation_mask_path),
|
|
COOP: infos[COOP],
|
|
INSTANCES: instance_data,
|
|
}
|
|
|
|
|
|
def _generate_examples(self, **kwargs):
|
|
if self.config.name in [full_dataset_name]:
|
|
yield from self._generate_all(**kwargs)
|
|
|
|
elif self.config.name == semantic_segmentation_name:
|
|
for image_id, example in self._generate_all(**kwargs):
|
|
yield image_id, {
|
|
IMAGE: example[IMAGE],
|
|
SEGMENTATION_MAKS: example[SEGMENTATION_MAKS],
|
|
}
|
|
|
|
elif self.config.name == instance_segmentation_name:
|
|
for image_id, example in self._generate_all(**kwargs):
|
|
yield image_id, {
|
|
IMAGE: example[IMAGE],
|
|
INSTANCES: [
|
|
{
|
|
INSTANCE_MASK: instance[INSTANCE_MASK]
|
|
}
|
|
for instance in example[INSTANCES]
|
|
]
|
|
}
|
|
|
|
elif self.config.name == animal_category_anomoalies_name:
|
|
for image_id, example in self._generate_all(**kwargs):
|
|
for instance in example[INSTANCES]:
|
|
instance_id = Path(instance[CROP]).stem
|
|
yield instance_id, {
|
|
CROP: instance[CROP],
|
|
CATEGORY: instance[CATEGORY],
|
|
}
|
|
|
|
elif self.config.name in [
|
|
re_id_best_name, re_id_full_name,
|
|
|
|
]:
|
|
for image_id, example in self._generate_all(**kwargs):
|
|
for instance in example[INSTANCES]:
|
|
|
|
|
|
use_all = self.config.name == re_id_full_name
|
|
selected_visibility = instance[VISIBILITY] == self.config.name.split("-")[-2]
|
|
|
|
if use_all or selected_visibility:
|
|
instance_id = Path(instance[CROP]).stem
|
|
yield instance_id, {
|
|
CROP: instance[CROP],
|
|
ID: instance[ID],
|
|
}
|
|
|
|
|
|
|
|
|