Datasets:
File size: 30,366 Bytes
ccf2a29 c5191f4 3c17780 c5191f4 3c17780 f293776 9f2e966 bea2fde e7041c4 f65bfc2 d53008c ccf2a29 64e29b8 8d08c81 979091c 2298f39 367e63d 5b977ba 25feefb 44e142d d8d5a61 219ccc5 108b752 4686590 ccf2a29 c5191f4 f293776 9f2e966 bea2fde e7041c4 f65bfc2 ccf2a29 8d08c81 979091c 2298f39 367e63d 5b977ba 25feefb 44e142d d8d5a61 219ccc5 4686590 90c2ab8 1edd557 bd63497 6e96380 345f3a3 b1386e6 1a846f7 90c2ab8 345f3a3 90c2ab8 b1386e6 90c2ab8 1a846f7 4965c89 ccf2a29 90c2ab8 6e96380 90c2ab8 345f3a3 90c2ab8 1a846f7 90c2ab8 1edd557 90c2ab8 b1386e6 1a846f7 90c2ab8 1a846f7 345f3a3 90c2ab8 345f3a3 90c2ab8 1a846f7 90c2ab8 b1386e6 6e96380 345f3a3 b1386e6 90c2ab8 345f3a3 90c2ab8 1edd557 90c2ab8 b1386e6 1a846f7 90c2ab8 345f3a3 90c2ab8 b1386e6 1a846f7 345f3a3 90c2ab8 345f3a3 90c2ab8 345f3a3 90c2ab8 1a846f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 |
---
dataset_info:
- config_name: arb_Arab
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 4913929
num_examples: 1000
download_size: 2381622
dataset_size: 4913929
- config_name: ary_Arab
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3086740
num_examples: 1000
download_size: 1515329
dataset_size: 3086740
- config_name: arz_Arab
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3175887
num_examples: 1000
download_size: 1543207
dataset_size: 3175887
- config_name: bar_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 2494628
num_examples: 1000
download_size: 1517640
dataset_size: 2494628
- config_name: cmn_Hani
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 4075430
num_examples: 1000
download_size: 2925797
dataset_size: 4075430
- config_name: dan_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3978961
num_examples: 1000
download_size: 2315349
dataset_size: 3978961
- config_name: default
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 85135910
num_examples: 15514
download_size: 44729523
dataset_size: 85135910
- config_name: fas_Arab
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 5759890
num_examples: 1000
download_size: 2662440
dataset_size: 5759890
- config_name: fil_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3902949
num_examples: 1000
download_size: 2247184
dataset_size: 3902949
- config_name: fin_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 4173619
num_examples: 1000
download_size: 2576592
dataset_size: 4173619
- config_name: gmh_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 16120134
num_examples: 1000
download_size: 9109369
dataset_size: 16120134
- config_name: hin_Deva
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 6238691
num_examples: 1000
download_size: 2358281
dataset_size: 6238691
- config_name: lvs_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 4608981
num_examples: 1000
download_size: 2807535
dataset_size: 4608981
- config_name: rus_Cyrl
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 9674640
num_examples: 1000
download_size: 4687716
dataset_size: 9674640
- config_name: slk_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 4016579
num_examples: 1000
download_size: 2631169
dataset_size: 4016579
- config_name: tat_Cyrl
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 9024414
num_examples: 1514
download_size: 4381510
dataset_size: 9024414
- config_name: vie_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 5446817
num_examples: 1000
download_size: 2741901
dataset_size: 5446817
configs:
- config_name: arb_Arab
data_files:
- split: train
path: arb_Arab/train-*
- config_name: ary_Arab
data_files:
- split: train
path: ary_Arab/train-*
- config_name: arz_Arab
data_files:
- split: train
path: arz_Arab/train-*
- config_name: bar_Latn
data_files:
- split: train
path: bar_Latn/train-*
- config_name: cmn_Hani
data_files:
- split: train
path: cmn_Hani/train-*
- config_name: dan_Latn
data_files:
- split: train
path: dan_Latn/train-*
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: fas_Arab
data_files:
- split: train
path: fas_Arab/train-*
- config_name: fil_Latn
data_files:
- split: train
path: fil_Latn/train-*
- config_name: fin_Latn
data_files:
- split: train
path: fin_Latn/train-*
- config_name: gmh_Latn
data_files:
- split: train
path: gmh_Latn/train-*
- config_name: hin_Deva
data_files:
- split: train
path: hin_Deva/train-*
- config_name: lvs_Latn
data_files:
- split: train
path: lvs_Latn/train-*
- config_name: rus_Cyrl
data_files:
- split: train
path: rus_Cyrl/train-*
- config_name: slk_Latn
data_files:
- split: train
path: slk_Latn/train-*
- config_name: tat_Cyrl
data_files:
- split: train
path: tat_Cyrl/train-*
- config_name: vie_Latn
data_files:
- split: train
path: vie_Latn/train-*
tags:
- argilla
- data-is-better-together
task_categories:
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
language:
- fas
- dan
- arz
- ary
- arb
- vie
- tat
- rus
- gmh
- bar
- hin
- arb
- fil
- cmn
- fin
pretty_name: FineWeb-c
---
# FineWeb-C: Educational content in many languages, labelled by the community
<center>
<img src="https://huggingface.co/spaces/data-is-better-together/fineweb-communications-pack/resolve/main/fineweb-c-card-header.png" alt="FineWeb 2: A sparkling update with 1000s of languages">
</center>
> *Multilingual data is better together!*
**Note**: This datasets and the dataset card are works in progress. You can help contribute to the dataset [here](https://huggingface.co/spaces/data-is-better-together/fineweb-c) and join the community discussions in [rocket chat](https://chat.huggingface.co/channel/fineweb-c)!
## What is this?
This is a collaborative, community-driven project that expands upon the [FineWeb2](https://huggingface.co/datasets/HuggingFaceFW/fineweb-2) dataset. Our goal is to create high-quality educational content annotations across hundreds of languages.
By enhancing web content with these annotations, we aim to improve the development of Large Language Models (LLMs) in all languages, making AI technology more accessible and effective globally.
The annotations in this dataset will help train AI systems to automatically identify high-quality educational content in more languages and in turn help build better Large Language Models for all languages.
### What the community is doing:
- For a given language, look at a page of web content from the [FineWeb2](https://huggingface.co/datasets/HuggingFaceFW/fineweb-2) dataset in Argilla.
- Rate how educational the content is.
- Flag problematic content i.e. content that is malformed or in the wrong language.
Once a language reaches 1,000 annotations, the dataset will be included in this dataset! Alongside rating the educational quality of the content, different language communities are discussing other ways to improve the quality of data for their language in our [rocket chat](https://chat.huggingface.co/channel/fineweb-c) discussion channel.
### What's been done so far?
So far **371** members of the Hugging Face community have submitted **41,818** annotations.
The following languages have reached the 1,000 annotation threshold to be included in the dataset. We'll keep updating this dataset as more annotations are added!
| Language Code | Language Name | Completed Annotations | Annotators |
|--------------|---------------|---------------------|------------|
| arb_Arab | Standard Arabic | 1000 | 10 |
| ary_Arab | Moroccan Arabic | 1000 | 15 |
| arz_Arab | Egyptian Arabic | 1000 | 9 |
| bar_Latn | Bavarian | 1000 | 1 |
| cmn_Hani | Mandarin Chinese | 1000 | 3 |
| dan_Latn | Danish | 1000 | 18 |
| fas_Arab | Persian | 1000 | 3 |
| fil_Latn | Filipino | 1000 | 2 |
| fin_Latn | Finnish | 1000 | 7 |
| gmh_Latn | Middle High German | 1000 | 1 |
| hin_Deva | Hindi | 1000 | 3 |
| rus_Cyrl | Russian | 1000 | 4 |
| tat_Cyrl | Tatar | 1514 | 8 |
| vie_Latn | Vietnamese | 1000 | 11 |
_You can help contribute to the dataset [here](https://huggingface.co/spaces/data-is-better-together/fineweb-c)._
Below is an overview of the number of annotations submitted for each language (updated daily).
<iframe src="https://huggingface.co/datasets/data-is-better-together/fineweb-c-progress/embed/sql-console/dhn8hw-" frameborder="0" width="100%" height="560px"></iframe>
### Why are we doing this?
There are many languages in the world where no high quality LLMs exist. Having high quality data is a central part of building high quality LLMs. [FineWeb2](https://huggingface.co/datasets/HuggingFaceFW/fineweb-2) is a crucial step in improving the availability of high quality data for many languages. We plan to go a step further.
#### Fineweb-Edu for every language?
[FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) is a dataset built on the original [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) dataset. The dataset was constructed by developing an educational quality classifier using annotations generated by LLama3-70B-Instruct and using this classifier to retain only the most educational web pages.
FineWeb-Edu outperforms FineWeb on popular benchmark. Crucially, using this approach reduces the amount of data needed to train a high quality LLM reducing the barrier to building a high quality LLM for many languages.
We want to make it possible to build FineWeb-Edu datasets for all the worlds languages. To do this we need annotations in order to train an educational quality classifier.
This in turn will allow us to build the next generation of Large Language Models for many languages.
#### Why not use LLMs to annotate the data?
For high resources languages, using an LLM to generate educational quality annotations can be a good solution. However, for many languages LLMs are not able to generate high quality annotations — or we don't have enough data to validate whether the annotations are correct.
## How can I help?
You can help by contributing to the dataset [here](https://huggingface.co/spaces/data-is-better-together/fineweb-c) and join the community discussions in [rocket chat](https://chat.huggingface.co/channel/fineweb-c)!
## Why would I bother to contribute to this dataset?
Your contributions directly shape the future of AI in your language. Here's why this matters:
1. Break the AI language barrier: Most commercial AI companies focus on profitable languages, leaving many communities behind. Your work helps bring AI capabilities to more languages.
2. Keep it open: Unlike proprietary datasets locked away by companies, FineWeb2-C is an open dataset. This means anyone can use it to build AI systems that truly serve their community's needs. Through this open approach we also learn about which approaches work best for different languages.
3. Be part of something bigger: Just as Wikipedia showed how volunteers can build invaluable resources, the Hugging Face community has created numerous open models and datasets. You're joining a movement to democratize AI technology.
Every annotation counts. Whether you can contribute ten minutes or ten hours, your input helps build a more inclusive future for AI technology 🤗
## Who contributed to this dataset so far?
These are the top 10 contributors to this release of the dataset. Make sure to give them a follow on the Hub to show your appreciation!
| Hugging Face Username | Submissions |
|----------|------------|
| [stefan-it](https://huggingface.co/stefan-it) | 2,311 |
| [hasnachouikhi](https://huggingface.co/hasnachouikhi) | 1,865 |
| [Aivis](https://huggingface.co/Aivis) | 1,060 |
| [catastropiyush](https://huggingface.co/catastropiyush) | 1,053 |
| [ivykopal](https://huggingface.co/ivykopal) | 1,028 |
| [rasgaard](https://huggingface.co/rasgaard) | 1,000 |
| [vikkormallansohn](https://huggingface.co/vikkormallansohn) | 1,000 |
| [mhyles](https://huggingface.co/mhyles) | 993 |
| [Maani](https://huggingface.co/Maani) | 985 |
| [paperplanedeemo](https://huggingface.co/paperplanedeemo) | 978 |
Data work is the under appreciated foundation of AI and ML. This dataset is built by the community for the community. Below is a leaderboard that is updated daily and shows all the contributors to this annotation effort.
<iframe src="https://huggingface.co/datasets/data-is-better-together/fineweb-c-progress/embed/sql-console/DJ2n1Z0" frameborder="0" width="100%" height="560px"></iframe>
#### Language-specific Contributors
Below you can find a list of all the contributors to this release of the dataset for each language ❤️
<details>
<summary>Detailed Contributor Statistics for each language</summary>
### Bavarian (bar_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [stefan-it](https://huggingface.co/stefan-it) | 1000 |
</details>
### Danish (dan_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [rasgaard](https://huggingface.co/rasgaard) | 1000 |
| [JakobBlaa](https://huggingface.co/JakobBlaa) | 978 |
| [saattrupdan](https://huggingface.co/saattrupdan) | 200 |
| [FrLars21](https://huggingface.co/FrLars21) | 80 |
| [markhougaard](https://huggingface.co/markhougaard) | 72 |
| [KennethEnevoldsen](https://huggingface.co/KennethEnevoldsen) | 44 |
| [Apasalic](https://huggingface.co/Apasalic) | 33 |
| [tqvist](https://huggingface.co/tqvist) | 33 |
| [cnila](https://huggingface.co/cnila) | 31 |
| [Soeren-B](https://huggingface.co/Soeren-B) | 28 |
| [KristianL](https://huggingface.co/KristianL) | 22 |
| [mathiasn1](https://huggingface.co/mathiasn1) | 16 |
| [ITK-dev](https://huggingface.co/ITK-dev) | 12 |
| [jannikskytt](https://huggingface.co/jannikskytt) | 8 |
| [AndreasLH](https://huggingface.co/AndreasLH) | 7 |
| [perlausten](https://huggingface.co/perlausten) | 5 |
| [sorenmulli](https://huggingface.co/sorenmulli) | 3 |
| [organicoder](https://huggingface.co/organicoder) | 1 |
</details>
### Egyptian Arabic (arz_Arab)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [mmhamdy](https://huggingface.co/mmhamdy) | 734 |
| [aishahamdy](https://huggingface.co/aishahamdy) | 141 |
| [oumayma03](https://huggingface.co/oumayma03) | 54 |
| [omarelshehy](https://huggingface.co/omarelshehy) | 46 |
| [ghada00](https://huggingface.co/ghada00) | 14 |
| [heba1998](https://huggingface.co/heba1998) | 10 |
| [chemouda](https://huggingface.co/chemouda) | 3 |
| [aammari](https://huggingface.co/aammari) | 2 |
| [amreleraqi](https://huggingface.co/amreleraqi) | 1 |
</details>
### Filipino (fil_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [mhyles](https://huggingface.co/mhyles) | 993 |
| [maryclara](https://huggingface.co/maryclara) | 7 |
</details>
### Finnish (fin_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [RASMUS](https://huggingface.co/RASMUS) | 472 |
| [RajaVardhan](https://huggingface.co/RajaVardhan) | 350 |
| [askokauppi](https://huggingface.co/askokauppi) | 120 |
| [readd](https://huggingface.co/readd) | 65 |
| [Zakalaklaa](https://huggingface.co/Zakalaklaa) | 4 |
| [antupis](https://huggingface.co/antupis) | 3 |
| [valstu](https://huggingface.co/valstu) | 3 |
</details>
### Hindi (hin_Deva)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [catastropiyush](https://huggingface.co/catastropiyush) | 926 |
| [pp](https://huggingface.co/pp) | 73 |
| [Urmish](https://huggingface.co/Urmish) | 1 |
</details>
### Mandarin Chinese (cmn_Hani)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [paperplanedeemo](https://huggingface.co/paperplanedeemo) | 978 |
| [guokan-shang](https://huggingface.co/guokan-shang) | 12 |
| [AdinaY](https://huggingface.co/AdinaY) | 10 |
</details>
### Middle High German (gmh_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [stefan-it](https://huggingface.co/stefan-it) | 1000 |
</details>
### Moroccan Arabic (ary_Arab)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [Ihssane123](https://huggingface.co/Ihssane123) | 499 |
| [imomayiz](https://huggingface.co/imomayiz) | 234 |
| [NouhailaChab05](https://huggingface.co/NouhailaChab05) | 120 |
| [nouamanetazi](https://huggingface.co/nouamanetazi) | 58 |
| [master12gx](https://huggingface.co/master12gx) | 37 |
| [oumayma03](https://huggingface.co/oumayma03) | 21 |
| [Overowser](https://huggingface.co/Overowser) | 14 |
| [SoufianeDahimi](https://huggingface.co/SoufianeDahimi) | 12 |
| [adnananouzla](https://huggingface.co/adnananouzla) | 11 |
| [alielfilali01](https://huggingface.co/alielfilali01) | 3 |
| [staghado](https://huggingface.co/staghado) | 3 |
| [olafdil](https://huggingface.co/olafdil) | 2 |
| [maghwa](https://huggingface.co/maghwa) | 2 |
| [0xTechVio](https://huggingface.co/0xTechVio) | 1 |
| [maggierphunt](https://huggingface.co/maggierphunt) | 1 |
</details>
### Persian (fas_Arab)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [Maani](https://huggingface.co/Maani) | 985 |
| [mehrdadazizi](https://huggingface.co/mehrdadazizi) | 14 |
| [kargaranamir](https://huggingface.co/kargaranamir) | 1 |
</details>
### Russian (rus_Cyrl)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [kitano-o](https://huggingface.co/kitano-o) | 593 |
| [kristaller486](https://huggingface.co/kristaller486) | 396 |
| [knyazer](https://huggingface.co/knyazer) | 9 |
| [alialek](https://huggingface.co/alialek) | 5 |
</details>
### Standard Arabic (arb_Arab)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [hasnachouikhi](https://huggingface.co/hasnachouikhi) | 1000 |
| [alielfilali01](https://huggingface.co/alielfilali01) | 4 |
</details>
### Standard Arabic (arb_Arab)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [hasnachouikhi](https://huggingface.co/hasnachouikhi) | 865 |
| [chemouda](https://huggingface.co/chemouda) | 102 |
| [oumayma03](https://huggingface.co/oumayma03) | 12 |
| [ahmedselhady](https://huggingface.co/ahmedselhady) | 9 |
| [staghado](https://huggingface.co/staghado) | 7 |
| [alielfilali01](https://huggingface.co/alielfilali01) | 4 |
| [YassineL](https://huggingface.co/YassineL) | 2 |
| [maggierphunt](https://huggingface.co/maggierphunt) | 1 |
</details>
### Tatar (tat_Cyrl)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [tagay1n](https://huggingface.co/tagay1n) | 780 |
| [gaydmi](https://huggingface.co/gaydmi) | 538 |
| [inov8](https://huggingface.co/inov8) | 149 |
| [iamdweebish](https://huggingface.co/iamdweebish) | 42 |
| [Giniyatullina](https://huggingface.co/Giniyatullina) | 6 |
| [Empirenull](https://huggingface.co/Empirenull) | 3 |
| [Khusaenov](https://huggingface.co/Khusaenov) | 1 |
| [mackshchim](https://huggingface.co/mackshchim) | 1 |
</details>
### Vietnamese (vie_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [anhha9](https://huggingface.co/anhha9) | 927 |
| [HoangHa](https://huggingface.co/HoangHa) | 864 |
| [LHPKAI](https://huggingface.co/LHPKAI) | 454 |
| [presencesw](https://huggingface.co/presencesw) | 312 |
| [convoicon](https://huggingface.co/convoicon) | 148 |
| [thangvip](https://huggingface.co/thangvip) | 104 |
| [High-Will](https://huggingface.co/High-Will) | 19 |
| [Stella9924](https://huggingface.co/Stella9924) | 15 |
| [PhongLT](https://huggingface.co/PhongLT) | 13 |
| [toanchuyenkhoa](https://huggingface.co/toanchuyenkhoa) | 9 |
| [TienAnh](https://huggingface.co/TienAnh) | 4 |
</details>
</details>
## Using this dataset
The dataset has a `default` config that contains all the language and configs per language.
To download the dataset using the Hugging Face `datasets` library, you can use the following code:
```python
from datasets import load_dataset
dataset = load_dataset("data-is-better-together/fineweb-c-edu")
```
To download a specific language, you can use the following code:
```python
dataset = load_dataset("data-is-better-together/fineweb-c-edu", language="cmn_Hani")
```
You can also download the dataset using Pandas
```python
import pandas as pd
# Login using e.g. `huggingface-cli login` to access this dataset
df = pd.read_parquet("hf://datasets/data-is-better-together/fineweb-c-edu/arb_Arab/train-00000-of-00001.parquet")
```
or polars
```python
import polars as pl
# Login using e.g. `huggingface-cli login` to access this dataset
df = pl.read_parquet('hf://datasets/davanstrien/fineweb-c-exported-data-test/arb_Arab/train-00000-of-00001.parquet')
```
## Data Fields
The dataset contains the following columns:
| Column Name | Type | Description |
| ----------------------------------- | ------------ | ---------------------------------------------------------------------------------------------- |
| id | string | A unique identifier for each annotation record |
| text | string | The text of the web page |
| educational_value_labels | list[string] | A list of labels indicating the educational value of the web page rated by the community |
| annotator_ids | string | A string ID for the annotator |
| problematic_content_label_present | boolean | A flag indicating the presence of at leaste one 'problematic' label being assigned to the text |
| problematic_content_label_agreement | float | The agreement of the annotator with the problematic content label |
| language_names | str | The name of the language page |
| language_code | str | The code of the language |
| | | |
The main things to note (we'll update this as we get more data)
- Some languages already have multiple annotations per page. So far we haven't done any processing on these rows so people are free to calculate the agreement of the annotators in whatever way they want.
- For languages with many active annotators, we may increase the overlap of annotations over time to further improve the quality of the dataset.
- Some languages contain many `problematic content` labels. These often occur when the language detection was not correct. There is a `problematic_content_label_present` boolean column that indicates if the page contains at least one `problematic content` label. If you want to remove these rows you can do so by filtering on this column. Alternatively, you can use the `problematic_content_label_agreement` column to filter on the agreement of the annotators i.e. only remove rows where the annotators agree on the `problematic content` label. For many of the most active language efforts we're working with the community to improve the quality of the data so we hope the number of `problematic content` labels will decrease over time.
## Licensing Information
The dataset is released under the Open Data Commons Attribution License (ODC-By) v1.0 license. The use of this dataset is also subject to CommonCrawl's Terms of Use.
## Citation
_Citation information needs to be added_
## Last Updated
2025-01-03 |