File size: 2,067 Bytes
2f47fdc 847619e 2f47fdc 847619e 2f47fdc 847619e 2f47fdc 847619e 2f47fdc 847619e 2f47fdc 847619e 2f47fdc 847619e 2f47fdc 847619e 2f47fdc 847619e 2f47fdc 847619e 2f47fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import os
import gradio as gr
import wandb
from huggingface_hub import HfApi
TOKEN = os.environ.get("DATACOMP_TOKEN")
API = HfApi(token=TOKEN)
wandb_api_key = os.environ.get('wandb_api_key')
wandb.login(key=wandb_api_key)
random_num = f"20.0"
subset = f"frac-1over2"
experiment_name = f"ImageNetTraining20.0-frac-1over2"
experiment_repo = f"datacomp/ImageNetTraining20.0-frac-1over2"
def start_train():
os.system("echo '#### pwd'")
os.system("pwd")
os.system("echo '#### ls'")
os.system("ls")
# Create a place to put the output.
os.system("echo 'Creating results output repository in case it does not exist yet...'")
try:
API.create_repo(repo_id=f"datacomp/ImageNetTraining20.0-frac-1over2", repo_type="dataset",)
os.system(f"echo 'Created results output repository datacomp/ImageNetTraining20.0-frac-1over2'")
except:
os.system("echo 'Already there; skipping.'")
pass
os.system("echo 'Beginning processing.'")
# Handles CUDA OOM errors.
os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True")
os.system("echo 'Okay, trying training.'")
os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/imagenet-1k-random-20.0-frac-1over2 --log-wandb --wandb-project ImageNetTraining20.0-frac-1over2 --experiment ImageNetTraining20.0-frac-1over2 --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4")
os.system("echo 'Done'.")
os.system("ls")
# Upload output to repository
os.system("echo 'trying to upload...'")
API.upload_folder(folder_path="/app", repo_id=f"datacomp/ImageNetTraining20.0-frac-1over2", repo_type="dataset",)
API.pause_space(experiment_repo)
def run():
with gr.Blocks() as app:
gr.Markdown(f"Randomization: 20.0")
gr.Markdown(f"Subset: frac-1over2")
start = gr.Button("Start")
start.click(start_train)
app.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == '__main__':
run()
|