dazhangyu123 commited on
Commit
647434f
·
verified ·
1 Parent(s): 60c76b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -3
README.md CHANGED
@@ -5,8 +5,76 @@ task_categories:
5
  language:
6
  - en
7
  tags:
8
- - whole slide image classification
9
- - multiple instance learning
10
  size_categories:
11
  - 10B<n<100B
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  language:
6
  - en
7
  tags:
8
+ - Whole slide image classification
9
+ - Multiple instance Learning
10
  size_categories:
11
  - 10B<n<100B
12
+ ---
13
+ # WSI Classification Dataset for AEM
14
+
15
+ ## Dataset Summary
16
+
17
+ This dataset is derived from the publicly available CAMELYON16 and CAMELYON17 datasets. It consists of feature embeddings extracted from tissue patches of whole slide images (WSIs) using various pre-trained models. The dataset is designed for use in multiple instance learning (MIL) based WSI classification tasks, particularly for the Attention Entropy Maximization (AEM) method.
18
+
19
+ ## Usage
20
+
21
+ For detailed instructions on using this dataset with the Attention Entropy Maximization (AEM) method, please refer to the official AEM GitHub repository and arXiv paper:
22
+
23
+ - [AEM GitHub Repository](https://github.com/dazhangyu123/AEM)
24
+ - [AEM: Attention Entropy Maximization for Multiple Instance Learning based Whole Slide Image Classification](https://arxiv.org/abs/2406.15303)
25
+
26
+ These resources provide implementation details, examples, and documentation on applying AEM to WSI classification tasks using this dataset.
27
+ ## Dataset Creation
28
+
29
+ ### Source Data
30
+
31
+ - **CAMELYON16**: 400 WSIs of sentinel lymph node sections. [More info](https://camelyon16.grand-challenge.org/)
32
+ - **CAMELYON17**: 500 WSIs with slide-level annotations, selected from the CAMELYON17 training set. [More information](https://camelyon17.grand-challenge.org/)
33
+
34
+ ### Data Processing
35
+
36
+ 1. Tissue patches were extracted from the WSIs using the [CLAM toolkit](https://github.com/mahmoodlab/CLAM).
37
+
38
+ 2. Feature embeddings were generated for each patch using these pre-trained models:
39
+ - ResNet18: [PyTorch pre-trained weights](https://download.pytorch.org/models/resnet18-5c106cde.pth)
40
+ - Lunit pre-trained DINO: [Checkpoint](https://github.com/lunit-io/benchmark-ssl-pathology/releases/tag/pretrained-weights)
41
+ - PathGen-CLIP: [Pre-trained checkpoints](https://arxiv.org/pdf/2407.00203)
42
+
43
+
44
+ ## Considerations for Using the Data
45
+
46
+ ### Intended Uses
47
+
48
+ This dataset is primarily intended for research in computational pathology, specifically for developing and evaluating MIL-based WSI classification methods.
49
+
50
+ ### Social Impact and Biases
51
+
52
+ While this dataset aims to advance research in computational pathology and potentially improve diagnostic tools, users should be aware of potential biases inherent in the original CAMELYON datasets. These biases may affect the generalizability of models trained on this data.
53
+
54
+ ## Additional Information
55
+
56
+ ### Licensing Information
57
+
58
+ This dataset is released under the Apache 2.0 license.
59
+
60
+ ### Citation Information
61
+
62
+ If you use this dataset, please cite:
63
+
64
+ ```bibtex
65
+ @article{zhang2023attention,
66
+ title={Attention-challenging multiple instance learning for whole slide image classification},
67
+ author={Zhang, Yunlong and Li, Honglin and Sun, Yuxuan and Zheng, Sunyi and Zhu, Chenglu and Yang, Lin},
68
+ journal={arXiv preprint arXiv:2311.07125},
69
+ year={2023}
70
+ }
71
+
72
+ @misc{zhang2024aemattentionentropymaximization,
73
+ title={AEM: Attention Entropy Maximization for Multiple Instance Learning based Whole Slide Image Classification},
74
+ author={Yunlong Zhang and Zhongyi Shui and Yunxuan Sun and Honglin Li and Jingxiong Li and Chenglu Zhu and Lin Yang},
75
+ year={2024},
76
+ eprint={2406.15303},
77
+ archivePrefix={arXiv},
78
+ primaryClass={cs.CV},
79
+ url={https://arxiv.org/abs/2406.15303}
80
+ }