alex-miller commited on
Commit
f483fa6
·
verified ·
1 Parent(s): 5a0135f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md CHANGED
@@ -68,4 +68,45 @@ configs:
68
  data_files:
69
  - split: train
70
  path: data/train-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  data_files:
69
  - split: train
70
  path: data/train-*
71
+ license: apache-2.0
72
+ task_categories:
73
+ - text-classification
74
+ language:
75
+ - en
76
+ - fr
77
+ - es
78
+ - de
79
+ tags:
80
+ - finance
81
+ - climate
82
+ pretty_name: International Aid Transparency Initiative (IATI) Policy Marker Dataset
83
+ size_categories:
84
+ - 100K<n<1M
85
  ---
86
+
87
+ # International Aid Transparency Initiative (IATI) Policy Marker Dataset
88
+
89
+ A multi-purpose dataset including all activity title and description text published to IATI with metadata for policy markers.
90
+ For more information on IATI policy markers, see the [element page](https://iatistandard.org/en/iati-standard/203/activity-standard/iati-activities/iati-activity/policy-marker/) on the IATI Standard Website.
91
+ IATI is a living data source, and this dataset was last updated on March 13, 2024. For the code to generate an updated version of this dataset, please see my Github repository [here](https://github.com/akmiller01/iati-policy-marker-hf-dataset).
92
+
93
+ For any given policy marker in this dataset, there are two columns. One indicates whether the publisher utilizes the policy marker at all (e.g. `gender_equality`), and the other represents the marker significance (e.g. `gender_equality_sig`).
94
+ The language column is pipe separated. It should be mostly ISO 639, but it's a free-text field so there may be other values.
95
+
96
+ A suggested use would be:
97
+
98
+ ```
99
+ from datasets import load_dataset
100
+
101
+ iati = load_dataset("alex-miller/iati-policy-markers", split="train")
102
+ gender_relevant_iati = iati.filter(lambda example: example["gender_equality"]).rename_column("gender_equality_sig", "label")
103
+ cols_to_remove = gender_relevant_iati.column_names
104
+ cols_to_remove.remove("text")
105
+ cols_to_remove.remove("label")
106
+ gender_relevant_iati = gender_relevant_iati.remove_columns(cols_to_remove)
107
+ dataset = gender_relevant_iati.class_encode_column("label").train_test_split(
108
+ test_size=0.2,
109
+ stratify_by_column="label",
110
+ shuffle=True,
111
+ )
112
+ ```