sanchit-gandhi commited on
Commit
f79068d
·
1 Parent(s): a9e305a

add script

Browse files
transcription_data/ami-ihm.py → ami-ihm.py RENAMED
@@ -265,6 +265,10 @@ _AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "audio/{subset}/{split}/{_id}.tar.gz"
265
 
266
  _ANNOTATIONS_ARCHIVE_URL = _BASE_DATA_URL + "annotations/{split}/text"
267
 
 
 
 
 
268
  logger = datasets.utils.logging.get_logger(__name__)
269
 
270
 
@@ -297,6 +301,7 @@ class AMI(datasets.GeneratorBasedBuilder):
297
  "end_time": datasets.Value("float32"),
298
  "microphone_id": datasets.Value("string"),
299
  "speaker_id": datasets.Value("string"),
 
300
  }
301
  )
302
  return datasets.DatasetInfo(
@@ -329,6 +334,9 @@ class AMI(datasets.GeneratorBasedBuilder):
329
  annotations_urls = {split: _ANNOTATIONS_ARCHIVE_URL.format(split=split) for split in splits}
330
  annotations = dl_manager.download(annotations_urls)
331
 
 
 
 
332
  return [
333
  datasets.SplitGenerator(
334
  name=datasets.Split.TRAIN,
@@ -336,6 +344,7 @@ class AMI(datasets.GeneratorBasedBuilder):
336
  "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["train"]],
337
  "local_extracted_archives_paths": local_extracted_archives_paths["train"],
338
  "annotation": annotations["train"],
 
339
  "split": "train"
340
  },
341
  ),
@@ -345,6 +354,7 @@ class AMI(datasets.GeneratorBasedBuilder):
345
  "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["dev"]],
346
  "local_extracted_archives_paths": local_extracted_archives_paths["dev"],
347
  "annotation": annotations["dev"],
 
348
  "split": "dev"
349
  },
350
  ),
@@ -354,12 +364,13 @@ class AMI(datasets.GeneratorBasedBuilder):
354
  "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["eval"]],
355
  "local_extracted_archives_paths": local_extracted_archives_paths["eval"],
356
  "annotation": annotations["eval"],
 
357
  "split": "eval"
358
  },
359
  ),
360
  ]
361
 
362
- def _generate_examples(self, audio_archives, local_extracted_archives_paths, annotation, split):
363
  # open annotation file
364
  assert len(audio_archives) == len(local_extracted_archives_paths)
365
 
@@ -391,6 +402,14 @@ class AMI(datasets.GeneratorBasedBuilder):
391
  "speaker_id": speaker_id,
392
  }
393
 
 
 
 
 
 
 
 
 
394
  features = ["meeting_id", "audio_id", "text", "begin_time", "end_time", "microphone_id", "speaker_id"]
395
  for archive, local_archive_path in zip(audio_archives, local_extracted_archives_paths):
396
  for audio_path, audio_file in archive:
@@ -407,5 +426,7 @@ class AMI(datasets.GeneratorBasedBuilder):
407
  "path": os.path.join(local_archive_path, audio_path) if local_archive_path else audio_path,
408
  "bytes": audio_file.read(),
409
  },
410
- **{feature: audio_meta[feature] for feature in features}
 
411
  }
 
 
265
 
266
  _ANNOTATIONS_ARCHIVE_URL = _BASE_DATA_URL + "annotations/{split}/text"
267
 
268
+ _TRANSCRIPT_URL = "https://huggingface.co/datasets/distil-whisper/ami/resolve/main/transcription_data/greedy_search/"
269
+
270
+ _TRANSCRIPT_URLS = _TRANSCRIPT_URL + "{config}/{split}.txt"
271
+
272
  logger = datasets.utils.logging.get_logger(__name__)
273
 
274
 
 
301
  "end_time": datasets.Value("float32"),
302
  "microphone_id": datasets.Value("string"),
303
  "speaker_id": datasets.Value("string"),
304
+ "whisper_transcript": datasets.Value("string"),
305
  }
306
  )
307
  return datasets.DatasetInfo(
 
334
  annotations_urls = {split: _ANNOTATIONS_ARCHIVE_URL.format(split=split) for split in splits}
335
  annotations = dl_manager.download(annotations_urls)
336
 
337
+ transcription_urls = {split: _TRANSCRIPT_URLS.format(split=split) for split in splits}
338
+ transcript_archive_path = dl_manager.download(transcription_urls[self.config.name])
339
+
340
  return [
341
  datasets.SplitGenerator(
342
  name=datasets.Split.TRAIN,
 
344
  "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["train"]],
345
  "local_extracted_archives_paths": local_extracted_archives_paths["train"],
346
  "annotation": annotations["train"],
347
+ "transcript_files": transcript_archive_path["train"],
348
  "split": "train"
349
  },
350
  ),
 
354
  "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["dev"]],
355
  "local_extracted_archives_paths": local_extracted_archives_paths["dev"],
356
  "annotation": annotations["dev"],
357
+ "transcript_files": transcript_archive_path["dev"],
358
  "split": "dev"
359
  },
360
  ),
 
364
  "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["eval"]],
365
  "local_extracted_archives_paths": local_extracted_archives_paths["eval"],
366
  "annotation": annotations["eval"],
367
+ "transcript_files": transcript_archive_path["eval"],
368
  "split": "eval"
369
  },
370
  ),
371
  ]
372
 
373
+ def _generate_examples(self, audio_archives, local_extracted_archives_paths, annotation, transcript_files, split):
374
  # open annotation file
375
  assert len(audio_archives) == len(local_extracted_archives_paths)
376
 
 
402
  "speaker_id": speaker_id,
403
  }
404
 
405
+ whisper_transcripts = []
406
+
407
+ with open(transcript_files, encoding="utf-8") as f:
408
+ for row in f:
409
+ whisper_transcripts.append(row.rstrip("\n"))
410
+
411
+ idx = 0
412
+
413
  features = ["meeting_id", "audio_id", "text", "begin_time", "end_time", "microphone_id", "speaker_id"]
414
  for archive, local_archive_path in zip(audio_archives, local_extracted_archives_paths):
415
  for audio_path, audio_file in archive:
 
426
  "path": os.path.join(local_archive_path, audio_path) if local_archive_path else audio_path,
427
  "bytes": audio_file.read(),
428
  },
429
+ **{feature: audio_meta[feature] for feature in features},
430
+ "whisper_transcript": whisper_transcripts[idx],
431
  }
432
+ idx += 1