id
stringlengths
14
16
text
stringlengths
20
3.26k
source
stringlengths
65
181
af6afe90327e-17
Field that can be configured by the user with a default value. runnables.utils.ConfigurableFieldSpec(id, ...) Field that can be configured by the user. runnables.utils.FunctionNonLocals() Get the nonlocal variables accessed of a function. runnables.utils.GetLambdaSource() Get the source code of a lambda function. runnables.utils.IsFunctionArgDict() Check if the first argument of a function is a dict. runnables.utils.IsLocalDict(name, keys) Check if a name is a local dict. runnables.utils.NonLocals() Get nonlocal variables accessed. runnables.utils.SupportsAdd(*args, **kwargs) Protocol for objects that support addition. Functions¶ runnables.base.chain() Decorate a function to make it a Runnable. runnables.base.coerce_to_runnable(thing) Coerce a runnable-like object into a Runnable. runnables.config.acall_func_with_variable_args(...) Call function that may optionally accept a run_manager and/or config. runnables.config.call_func_with_variable_args(...) Call function that may optionally accept a run_manager and/or config. runnables.config.ensure_config([config]) Ensure that a config is a dict with all keys present. runnables.config.get_async_callback_manager_for_config(config) Get an async callback manager for a config. runnables.config.get_callback_manager_for_config(config) Get a callback manager for a config. runnables.config.get_config_list(config, length) Get a list of configs from a single config or a list of configs. runnables.config.get_executor_for_config(config) Get an executor for a config. runnables.config.merge_configs(*configs) Merge multiple configs into one.
https://api.python.langchain.com/en/latest/core_api_reference.html
af6afe90327e-18
runnables.config.merge_configs(*configs) Merge multiple configs into one. runnables.config.patch_config(config, *[, ...]) Patch a config with new values. runnables.config.run_in_executor(...) Run a function in an executor. runnables.configurable.make_options_spec(...) Make a ConfigurableFieldSpec for a ConfigurableFieldSingleOption or ConfigurableFieldMultiOption. runnables.configurable.prefix_config_spec(...) Prefix the id of a ConfigurableFieldSpec. runnables.graph.is_uuid(value) Check if a string is a valid UUID. runnables.graph.node_data_json(node, *[, ...]) Convert the data of a node to a JSON-serializable format. runnables.graph.node_data_str(node) Convert the data of a node to a string. runnables.graph_ascii.draw_ascii(vertices, edges) Build a DAG and draw it in ASCII. runnables.graph_mermaid.draw_mermaid(nodes, ...) Draws a Mermaid graph using the provided graph data runnables.graph_mermaid.draw_mermaid_png(...) Draws a Mermaid graph as PNG using provided syntax. runnables.passthrough.aidentity(x) Async identity function runnables.passthrough.identity(x) Identity function runnables.utils.aadd(addables) Asynchronously add a sequence of addable objects together. runnables.utils.accepts_config(callable) Check if a callable accepts a config argument. runnables.utils.accepts_context(callable) Check if a callable accepts a context argument. runnables.utils.accepts_run_manager(callable) Check if a callable accepts a run_manager argument. runnables.utils.add(addables) Add a sequence of addable objects together.
https://api.python.langchain.com/en/latest/core_api_reference.html
af6afe90327e-19
runnables.utils.add(addables) Add a sequence of addable objects together. runnables.utils.create_model(__model_name, ...) Create a pydantic model with the given field definitions. runnables.utils.gated_coro(semaphore, coro) Run a coroutine with a semaphore. runnables.utils.gather_with_concurrency(n, ...) Gather coroutines with a limit on the number of concurrent coroutines. runnables.utils.get_function_first_arg_dict_keys(func) Get the keys of the first argument of a function if it is a dict. runnables.utils.get_function_nonlocals(func) Get the nonlocal variables accessed by a function. runnables.utils.get_lambda_source(func) Get the source code of a lambda function. runnables.utils.get_unique_config_specs(specs) Get the unique config specs from a sequence of config specs. runnables.utils.indent_lines_after_first(...) Indent all lines of text after the first line. runnables.utils.is_async_callable(func) Check if a function is async. runnables.utils.is_async_generator(func) Check if a function is an async generator. langchain_core.stores¶ Store implements the key-value stores and storage helpers. Module provides implementations of various key-value stores that conform to a simple key-value interface. The primary goal of these storages is to support implementation of caching. Classes¶ stores.BaseStore() Abstract interface for a key-value store. stores.InMemoryBaseStore() In-memory implementation of the BaseStore using a dictionary. stores.InMemoryByteStore() In-memory store for bytes. stores.InMemoryStore() In-memory store for any type of data. stores.InvalidKeyException Raised when a key is invalid; e.g., uses incorrect characters.
https://api.python.langchain.com/en/latest/core_api_reference.html
af6afe90327e-20
stores.InvalidKeyException Raised when a key is invalid; e.g., uses incorrect characters. langchain_core.structured_query¶ Internal representation of a structured query language. Classes¶ structured_query.Comparator(value) Enumerator of the comparison operators. structured_query.Comparison Comparison to a value. structured_query.Expr Base class for all expressions. structured_query.FilterDirective Filtering expression. structured_query.Operation Llogical operation over other directives. structured_query.Operator(value) Enumerator of the operations. structured_query.StructuredQuery Structured query. structured_query.Visitor() Defines interface for IR translation using visitor pattern. langchain_core.sys_info¶ sys_info prints information about the system and langchain packages for debugging purposes. Functions¶ sys_info.print_sys_info(*[, additional_pkgs]) Print information about the environment for debugging purposes. langchain_core.tools¶ Tools are classes that an Agent uses to interact with the world. Each tool has a description. Agent uses the description to choose the right tool for the job. Class hierarchy: RunnableSerializable --> BaseTool --> <name>Tool # Examples: AIPluginTool, BaseGraphQLTool <name> # Examples: BraveSearch, HumanInputRun Main helpers: CallbackManagerForToolRun, AsyncCallbackManagerForToolRun Classes¶ tools.BaseTool Interface LangChain tools must implement. tools.BaseToolkit Base Toolkit representing a collection of related tools. tools.RetrieverInput Input to the retriever. tools.SchemaAnnotationError Raised when 'args_schema' is missing or has an incorrect type annotation. tools.StructuredTool Tool that can operate on any number of inputs. tools.Tool Tool that takes in function or coroutine directly. tools.ToolException Optional exception that tool throws when execution error occurs. Functions¶
https://api.python.langchain.com/en/latest/core_api_reference.html
af6afe90327e-21
tools.ToolException Optional exception that tool throws when execution error occurs. Functions¶ tools.create_retriever_tool(retriever, name, ...) Create a tool to do retrieval of documents. tools.create_schema_from_function(...) Create a pydantic schema from a function's signature. tools.render_text_description(tools) Render the tool name and description in plain text. tools.render_text_description_and_args(tools) Render the tool name, description, and args in plain text. tools.tool(*args[, return_direct, ...]) Make tools out of functions, can be used with or without arguments. langchain_core.tracers¶ Tracers are classes for tracing runs. Class hierarchy: BaseCallbackHandler --> BaseTracer --> <name>Tracer # Examples: LangChainTracer, RootListenersTracer --> <name> # Examples: LogStreamCallbackHandler Classes¶ tracers.base.AsyncBaseTracer(*[, _schema_format]) Async Base interface for tracers. tracers.base.BaseTracer(*[, _schema_format]) Base interface for tracers. tracers.evaluation.EvaluatorCallbackHandler(...) Tracer that runs a run evaluator whenever a run is persisted. tracers.event_stream.RunInfo Information about a run. tracers.langchain.LangChainTracer([...]) Implementation of the SharedTracer that POSTS to the LangChain endpoint. tracers.log_stream.LogEntry A single entry in the run log. tracers.log_stream.LogStreamCallbackHandler(*) Tracer that streams run logs to a stream. tracers.log_stream.RunLog(*ops, state) Run log. tracers.log_stream.RunLogPatch(*ops) Patch to the run log. tracers.log_stream.RunState State of the run.
https://api.python.langchain.com/en/latest/core_api_reference.html
af6afe90327e-22
Patch to the run log. tracers.log_stream.RunState State of the run. tracers.root_listeners.AsyncRootListenersTracer(*, ...) Async Tracer that calls listeners on run start, end, and error. tracers.root_listeners.RootListenersTracer(*, ...) Tracer that calls listeners on run start, end, and error. tracers.run_collector.RunCollectorCallbackHandler([...]) Tracer that collects all nested runs in a list. tracers.schemas.BaseRun [Deprecated] Base class for Run. tracers.schemas.ChainRun [Deprecated] Class for ChainRun. tracers.schemas.LLMRun [Deprecated] Class for LLMRun. tracers.schemas.Run Run schema for the V2 API in the Tracer. tracers.schemas.ToolRun [Deprecated] Class for ToolRun. tracers.schemas.TracerSession [Deprecated] TracerSessionV1 schema for the V2 API. tracers.schemas.TracerSessionBase [Deprecated] Base class for TracerSession. tracers.schemas.TracerSessionV1 [Deprecated] TracerSessionV1 schema. tracers.schemas.TracerSessionV1Base [Deprecated] Base class for TracerSessionV1. tracers.schemas.TracerSessionV1Create [Deprecated] Create class for TracerSessionV1. tracers.stdout.ConsoleCallbackHandler(**kwargs) Tracer that prints to the console. tracers.stdout.FunctionCallbackHandler(...) Tracer that calls a function with a single str parameter. Functions¶ tracers.context.collect_runs() Collect all run traces in context. tracers.context.register_configure_hook(...) Register a configure hook. tracers.context.tracing_enabled([session_name]) Throw an error because this has been replaced by tracing_v2_enabled.
https://api.python.langchain.com/en/latest/core_api_reference.html
af6afe90327e-23
Throw an error because this has been replaced by tracing_v2_enabled. tracers.context.tracing_v2_enabled([...]) Instruct LangChain to log all runs in context to LangSmith. tracers.evaluation.wait_for_all_evaluators() Wait for all tracers to finish. tracers.langchain.get_client() Get the client. tracers.langchain.log_error_once(method, ...) Log an error once. tracers.langchain.wait_for_all_tracers() Wait for all tracers to finish. tracers.langchain_v1.LangChainTracerV1(...) Throw an error because this has been replaced by LangChainTracer. tracers.langchain_v1.get_headers(*args, **kwargs) Throw an error because this has been replaced by get_headers. tracers.schemas.RunTypeEnum() [Deprecated] RunTypeEnum. tracers.stdout.elapsed(run) Get the elapsed time of a run. tracers.stdout.try_json_stringify(obj, fallback) Try to stringify an object to JSON. langchain_core.utils¶ Utility functions for LangChain. These functions do not depend on any other LangChain module. Classes¶ utils.aiter.NoLock() Dummy lock that provides the proper interface but no protection utils.aiter.Tee(iterable[, n, lock]) Create n separate asynchronous iterators over iterable. utils.aiter.atee alias of Tee utils.formatting.StrictFormatter() Formatter that checks for extra keys. utils.function_calling.FunctionDescription Representation of a callable function to send to an LLM. utils.function_calling.ToolDescription Representation of a callable function to the OpenAI API. utils.iter.NoLock() Dummy lock that provides the proper interface but no protection utils.iter.Tee(iterable[, n, lock])
https://api.python.langchain.com/en/latest/core_api_reference.html
af6afe90327e-24
utils.iter.Tee(iterable[, n, lock]) Create n separate asynchronous iterators over iterable utils.iter.safetee alias of Tee utils.mustache.ChevronError Custom exception for Chevron errors. Functions¶ utils.aiter.py_anext(iterator[, default]) Pure-Python implementation of anext() for testing purposes. utils.aiter.tee_peer(iterator, buffer, ...) An individual iterator of a tee() utils.env.env_var_is_set(env_var) Check if an environment variable is set. utils.env.get_from_dict_or_env(data, key, ...) Get a value from a dictionary or an environment variable. utils.env.get_from_env(key, env_key[, default]) Get a value from a dictionary or an environment variable. utils.function_calling.convert_pydantic_to_openai_function(...) [Deprecated] Converts a Pydantic model to a function description for the OpenAI API. utils.function_calling.convert_pydantic_to_openai_tool(...) [Deprecated] Converts a Pydantic model to a function description for the OpenAI API. utils.function_calling.convert_python_function_to_openai_function(...) [Deprecated] Convert a Python function to an OpenAI function-calling API compatible dict. utils.function_calling.convert_to_openai_function(...) Convert a raw function/class to an OpenAI function. utils.function_calling.convert_to_openai_tool(tool) Convert a raw function/class to an OpenAI tool. utils.function_calling.format_tool_to_openai_function(tool) [Deprecated] Format tool into the OpenAI function API. utils.function_calling.format_tool_to_openai_tool(tool) [Deprecated] Format tool into the OpenAI function API. utils.function_calling.tool_example_to_messages(...) Convert an example into a list of messages that can be fed into an LLM.
https://api.python.langchain.com/en/latest/core_api_reference.html
af6afe90327e-25
Convert an example into a list of messages that can be fed into an LLM. utils.html.extract_sub_links(raw_html, url, *) Extract all links from a raw html string and convert into absolute paths. utils.html.find_all_links(raw_html, *[, pattern]) Extract all links from a raw html string. utils.image.encode_image(image_path) Get base64 string from image URI. utils.image.image_to_data_url(image_path) utils.input.get_bolded_text(text) Get bolded text. utils.input.get_color_mapping(items[, ...]) Get mapping for items to a support color. utils.input.get_colored_text(text, color) Get colored text. utils.input.print_text(text[, color, end, file]) Print text with highlighting and no end characters. utils.interactive_env.is_interactive_env() Determine if running within IPython or Jupyter. utils.iter.batch_iterate(size, iterable) Utility batching function. utils.iter.tee_peer(iterator, buffer, peers, ...) An individual iterator of a tee() utils.json.parse_and_check_json_markdown(...) Parse a JSON string from a Markdown string and check that it contains the expected keys. utils.json.parse_json_markdown(json_string, *) Parse a JSON string from a Markdown string. utils.json.parse_partial_json(s, *[, strict]) Parse a JSON string that may be missing closing braces. utils.json_schema.dereference_refs(schema_obj, *) Try to substitute $refs in JSON Schema. utils.loading.try_load_from_hub(*args, **kwargs) [Deprecated] utils.mustache.grab_literal(template, l_del) Parse a literal from the template. utils.mustache.l_sa_check(template, literal, ...)
https://api.python.langchain.com/en/latest/core_api_reference.html
af6afe90327e-26
utils.mustache.l_sa_check(template, literal, ...) Do a preliminary check to see if a tag could be a standalone. utils.mustache.parse_tag(template, l_del, r_del) Parse a tag from a template. utils.mustache.r_sa_check(template, ...) Do a final check to see if a tag could be a standalone. utils.mustache.render([template, data, ...]) Render a mustache template. utils.mustache.tokenize(template[, ...]) Tokenize a mustache template. utils.pydantic.get_pydantic_major_version() Get the major version of Pydantic. utils.strings.comma_list(items) Convert a list to a comma-separated string. utils.strings.stringify_dict(data) Stringify a dictionary. utils.strings.stringify_value(val) Stringify a value. utils.utils.build_extra_kwargs(extra_kwargs, ...) Build extra kwargs from values and extra_kwargs. utils.utils.check_package_version(package[, ...]) Check the version of a package. utils.utils.convert_to_secret_str(value) Convert a string to a SecretStr if needed. utils.utils.get_pydantic_field_names(...) Get field names, including aliases, for a pydantic class. utils.utils.guard_import(module_name, *[, ...]) Dynamically import a module and raise an exception if the module is not installed. utils.utils.mock_now(dt_value) Context manager for mocking out datetime.now() in unit tests. utils.utils.raise_for_status_with_text(response) Raise an error with the response text. utils.utils.xor_args(*arg_groups) Validate specified keyword args are mutually exclusive. langchain_core.vectorstores¶ Vector store stores embedded data and performs vector search. One of the most common ways to store and search over unstructured data is to
https://api.python.langchain.com/en/latest/core_api_reference.html
af6afe90327e-27
One of the most common ways to store and search over unstructured data is to embed it and store the resulting embedding vectors, and then query the store and retrieve the data that are ‘most similar’ to the embedded query. Class hierarchy: VectorStore --> <name> # Examples: Annoy, FAISS, Milvus BaseRetriever --> VectorStoreRetriever --> <name>Retriever # Example: VespaRetriever Main helpers: Embeddings, Document Classes¶ vectorstores.VectorStore() Interface for vector store. vectorstores.VectorStoreRetriever Base Retriever class for VectorStore.
https://api.python.langchain.com/en/latest/core_api_reference.html
a9c2d2f7c8d4-0
langchain_anthropic 0.1.15¶ langchain_anthropic.chat_models¶ Classes¶ chat_models.AnthropicTool chat_models.ChatAnthropic Anthropic chat model integration. chat_models.ChatAnthropicMessages [Deprecated] Functions¶ chat_models.convert_to_anthropic_tool(tool) langchain_anthropic.experimental¶ Classes¶ experimental.ChatAnthropicTools [Deprecated] Chat model for interacting with Anthropic functions. Functions¶ experimental.get_system_message(tools) langchain_anthropic.llms¶ Classes¶ llms.Anthropic [Deprecated] llms.AnthropicLLM Anthropic large language model. langchain_anthropic.output_parsers¶ Classes¶ output_parsers.ToolsOutputParser Create a new model by parsing and validating input data from keyword arguments. Functions¶ output_parsers.extract_tool_calls(content)
https://api.python.langchain.com/en/latest/anthropic_api_reference.html
452437e2ccd7-0
langchain_astradb 0.3.3¶ langchain_astradb.cache¶ Classes¶ cache.AstraDBCache(*[, collection_name, ...]) Cache that uses Astra DB as a backend. cache.AstraDBSemanticCache(*[, ...]) Cache that uses Astra DB as a vector-store backend for semantic (i.e. langchain_astradb.chat_message_histories¶ Astra DB - based chat message history, based on astrapy. Classes¶ chat_message_histories.AstraDBChatMessageHistory(*, ...) Chat message history that stores history in Astra DB. langchain_astradb.document_loaders¶ Classes¶ document_loaders.AstraDBLoader(...) Load DataStax Astra DB documents. langchain_astradb.storage¶ Classes¶ storage.AstraDBBaseStore(*args, **kwargs) Base class for the DataStax AstraDB data store. storage.AstraDBByteStore(*, collection_name) ByteStore implementation using DataStax AstraDB as the underlying store. storage.AstraDBStore(collection_name, *[, ...]) BaseStore implementation using DataStax AstraDB as the underlying store. langchain_astradb.utils¶ Classes¶ utils.astradb.SetupMode(value) An enumeration. Functions¶ utils.mmr.cosine_similarity(X, Y) Row-wise cosine similarity between two equal-width matrices. utils.mmr.maximal_marginal_relevance(...[, ...]) Calculate maximal marginal relevance. langchain_astradb.vectorstores¶ Classes¶ vectorstores.AstraDBVectorStore(*, ...[, ...]) Wrapper around DataStax Astra DB for vector-store workloads.
https://api.python.langchain.com/en/latest/astradb_api_reference.html
09aeddc69ef9-0
langchain_azure_dynamic_sessions 0.1.0¶ langchain_azure_dynamic_sessions.tools¶ Classes¶ tools.sessions.RemoteFileMetadata(filename, ...) Metadata for a file in the session. tools.sessions.SessionsPythonREPLTool A tool for running Python code in an Azure Container Apps dynamic sessions code interpreter.
https://api.python.langchain.com/en/latest/azure_dynamic_sessions_api_reference.html
3b042c54a9aa-0
langchain_core.callbacks.manager.CallbackManagerForChainRun¶ class langchain_core.callbacks.manager.CallbackManagerForChainRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager for chain run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. on_agent_action(action, **kwargs) Run when agent action is received. on_agent_finish(finish, **kwargs) Run when agent finish is received. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_retry(retry_state, **kwargs) Run on a retry event.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainRun.html
3b042c54a9aa-1
on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Return type None get_child(tag: Optional[str] = None) → CallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type CallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run when agent action is received. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainRun.html
3b042c54a9aa-2
Run when agent action is received. Parameters action (AgentAction) – The agent action. kwargs (Any) – Returns The result of the callback. Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → Any[source]¶ Run when agent finish is received. Parameters finish (AgentFinish) – The agent finish. kwargs (Any) – Returns The result of the callback. Return type Any on_chain_end(outputs: Union[Dict[str, Any], Any], **kwargs: Any) → None[source]¶ Run when chain ends running. Parameters outputs (Union[Dict[str, Any], Any]) – The outputs of the chain. kwargs (Any) – Return type None on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (Exception or KeyboardInterrupt) – The error. kwargs (Any) – Return type None on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. Parameters retry_state (RetryCallState) – kwargs (Any) – Return type None on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. kwargs (Any) – Returns The result of the callback. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainRun.html
1e5e77e8a563-0
langchain_core.callbacks.base.RetrieverManagerMixin¶ class langchain_core.callbacks.base.RetrieverManagerMixin[source]¶ Mixin for Retriever callbacks. Methods __init__() on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. __init__()¶ on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.RetrieverManagerMixin.html
90fee4b1c14f-0
langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler¶ class langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler(approve: ~typing.Callable[[~typing.Any], ~typing.Awaitable[bool]] = <function _adefault_approve>, should_check: ~typing.Callable[[~typing.Dict[str, ~typing.Any]], bool] = <function _default_true>)[source]¶ Asynchronous callback for manually validating values. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([approve, should_check]) on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, ...]) Run when chain ends running. on_chain_error(error, *, run_id[, ...]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, ...]) Run when LLM ends running. on_llm_error(error, *, run_id[, ...]) Run when LLM errors. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler.html
90fee4b1c14f-1
Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run on retriever end. on_retriever_error(error, *, run_id[, ...]) Run on retriever error. on_retriever_start(serialized, query, *, run_id) Run on retriever start. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id, tags]) Run on arbitrary text. on_tool_end(output, *, run_id[, ...]) Run when tool ends running. on_tool_error(error, *, run_id[, ...]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. Parameters approve (Callable[[Any], Awaitable[bool]]) – should_check (Callable[[Dict[str, Any]], bool]) – __init__(approve: ~typing.Callable[[~typing.Any], ~typing.Awaitable[bool]] = <function _adefault_approve>, should_check: ~typing.Callable[[~typing.Dict[str, ~typing.Any]], bool] = <function _default_true>)[source]¶ Parameters approve (Callable[[Any], Awaitable[bool]]) – should_check (Callable[[Dict[str, Any]], bool]) – async on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on agent action.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler.html
90fee4b1c14f-2
Run on agent action. Parameters action (AgentAction) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on agent end. Parameters finish (AgentFinish) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when chain errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler.html
90fee4b1c14f-3
kwargs (Any) – Return type None async on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type None async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any async on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when LLM ends running. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler.html
90fee4b1c14f-4
Run when LLM ends running. Parameters response (LLMResult) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when LLM errors. Parameters error (BaseException) – The error that occurred. kwargs (Any) – Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – Return type None async on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – chunk (Optional[Union[GenerationChunk, ChatGenerationChunk]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler.html
90fee4b1c14f-5
Run when LLM starts running. ATTENTION: This method is called for non-chat models (regular LLMs). Ifyou’re implementing a handler for a chat model, you should use on_chat_model_start instead. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type None async on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on retriever end. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on retriever error. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler.html
90fee4b1c14f-6
Run on retriever start. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type None async on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any async on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on arbitrary text. Parameters text (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_tool_end(output: Any, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when tool ends running. Parameters output (Any) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler.html
90fee4b1c14f-7
kwargs (Any) – Return type None async on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when tool errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler.html
1d22f70928a4-0
langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState¶ class langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState(value)[source]¶ Enumerator of the LLMThought state. THINKING = 'THINKING'¶ RUNNING_TOOL = 'RUNNING_TOOL'¶ COMPLETE = 'COMPLETE'¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState.html
7c8ef0dd13fb-0
langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler¶ class langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler(logger: Logger, handler: Any)[source]¶ Callback Handler for logging to WhyLabs. This callback handler utilizes langkit to extract features from the prompts & responses when interacting with an LLM. These features can be used to guardrail, evaluate, and observe interactions over time to detect issues relating to hallucinations, prompt engineering, or output validation. LangKit is an LLM monitoring toolkit developed by WhyLabs. Here are some examples of what can be monitored with LangKit: * Text Quality readability score complexity and grade scores Text Relevance - Similarity scores between prompt/responses - Similarity scores against user-defined themes - Topic classification Security and Privacy - patterns - count of strings matching a user-defined regex pattern group - jailbreaks - similarity scores with respect to known jailbreak attempts - prompt injection - similarity scores with respect to known prompt attacks - refusals - similarity scores with respect to known LLM refusal responses Sentiment and Toxicity - sentiment analysis - toxicity analysis For more information, see https://docs.whylabs.ai/docs/language-model-monitoring or check out the LangKit repo here: https://github.com/whylabs/langkit — :param api_key: WhyLabs API key. Optional because the preferred way to specify the API key is with environment variable WHYLABS_API_KEY. Parameters org_id (Optional[str]) – WhyLabs organization id to write profiles to. Optional because the preferred way to specify the organization id is with environment variable WHYLABS_DEFAULT_ORG_ID. dataset_id (Optional[str]) – WhyLabs dataset id to write profiles to. Optional because the preferred way to specify the dataset id is
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
7c8ef0dd13fb-1
Optional because the preferred way to specify the dataset id is with environment variable WHYLABS_DEFAULT_DATASET_ID. sentiment (bool) – Whether to enable sentiment analysis. Defaults to False. toxicity (bool) – Whether to enable toxicity analysis. Defaults to False. themes (bool) – Whether to enable theme analysis. Defaults to False. logger (Logger) – handler (Any) – Initiate the rolling logger. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(logger, handler) Initiate the rolling logger. close() Close any loggers to allow writing out of any profiles before exiting. flush() Explicitly write current profile if using a rolling logger. from_params(*[, api_key, org_id, ...]) Instantiate whylogs Logger from params. on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
7c8ef0dd13fb-2
Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__(logger: Logger, handler: Any)[source]¶ Initiate the rolling logger. Parameters logger (Logger) – handler (Any) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
7c8ef0dd13fb-3
Parameters logger (Logger) – handler (Any) – close() → None[source]¶ Close any loggers to allow writing out of any profiles before exiting. Return type None flush() → None[source]¶ Explicitly write current profile if using a rolling logger. Return type None classmethod from_params(*, api_key: Optional[str] = None, org_id: Optional[str] = None, dataset_id: Optional[str] = None, sentiment: bool = False, toxicity: bool = False, themes: bool = False, logger: Optional[Logger] = None) → WhyLabsCallbackHandler[source]¶ Instantiate whylogs Logger from params. Parameters api_key (Optional[str]) – WhyLabs API key. Optional because the preferred way to specify the API key is with environment variable WHYLABS_API_KEY. org_id (Optional[str]) – WhyLabs organization id to write profiles to. If not set must be specified in environment variable WHYLABS_DEFAULT_ORG_ID. dataset_id (Optional[str]) – The model or dataset this callback is gathering telemetry for. If not set must be specified in environment variable WHYLABS_DEFAULT_DATASET_ID. sentiment (bool) – If True will initialize a model to perform sentiment analysis compound score. Defaults to False and will not gather this metric. toxicity (bool) – If True will initialize a model to score toxicity. Defaults to False and will not gather this metric. themes (bool) – If True will initialize a model to calculate distance to configured themes. Defaults to None and will not gather this metric. logger (Optional[Logger]) – If specified will bind the configured logger as the telemetry gathering agent. Defaults to LangKit schema with periodic WhyLabs writer. Return type
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
7c8ef0dd13fb-4
WhyLabs writer. Return type WhyLabsCallbackHandler on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. Parameters action (AgentAction) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. Parameters finish (AgentFinish) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
7c8ef0dd13fb-5
kwargs (Any) – Return type Any on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM ends running. Parameters response (LLMResult) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
7c8ef0dd13fb-6
Run when LLM ends running. Parameters response (LLMResult) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
7c8ef0dd13fb-7
Run when LLM starts running. ATTENTION: This method is called for non-chat models (regular LLMs). Ifyou’re implementing a handler for a chat model, you should use on_chat_model_start instead. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
7c8ef0dd13fb-8
query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. Parameters text (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_end(output: Any, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running. Parameters output (Any) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
7c8ef0dd13fb-9
kwargs (Any) – Return type Any on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inputs (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any Examples using WhyLabsCallbackHandler¶ WhyLabs
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
06252e99e1f0-0
langchain_core.callbacks.manager.CallbackManagerForRetrieverRun¶ class langchain_core.callbacks.manager.CallbackManagerForRetrieverRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager for retriever run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. on_retriever_end(documents, **kwargs) Run when retriever ends running. on_retriever_error(error, **kwargs) Run when retriever errors. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForRetrieverRun.html
06252e99e1f0-1
on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Return type None get_child(tag: Optional[str] = None) → CallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type CallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_retriever_end(documents: Sequence[Document], **kwargs: Any) → None[source]¶ Run when retriever ends running. Parameters documents (Sequence[Document]) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForRetrieverRun.html
06252e99e1f0-2
kwargs (Any) – Return type None on_retriever_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when retriever errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. Parameters retry_state (RetryCallState) – kwargs (Any) – Return type None on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. kwargs (Any) – Returns The result of the callback. Return type Any Examples using CallbackManagerForRetrieverRun¶ How to add scores to retriever results How to create a custom Retriever
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForRetrieverRun.html
40df20695947-0
langchain_core.callbacks.manager.AsyncCallbackManager¶ class langchain_core.callbacks.manager.AsyncCallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async callback manager that handles callbacks from LangChain. Initialize callback manager. Attributes is_async Return whether the handler is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) configure([inheritable_callbacks, ...]) Configure the async callback manager. copy() Copy the callback manager. on_chain_start(serialized, inputs[, run_id]) Run when chain starts running. on_chat_model_start(serialized, messages[, ...]) Run when LLM starts running. on_llm_start(serialized, prompts[, run_id]) Run when LLM starts running. on_retriever_start(serialized, query[, ...]) Run when retriever starts running. on_tool_start(serialized, input_str[, ...]) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
40df20695947-1
Set handlers as the only handlers on the callback manager. Parameters handlers (List[BaseCallbackHandler]) – inheritable_handlers (Optional[List[BaseCallbackHandler]]) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – inheritable_tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inheritable_metadata (Optional[Dict[str, Any]]) – __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize callback manager. Parameters handlers (List[BaseCallbackHandler]) – inheritable_handlers (Optional[List[BaseCallbackHandler]]) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – inheritable_tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inheritable_metadata (Optional[Dict[str, Any]]) – Return type None add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Add a handler to the callback manager. Parameters handler (BaseCallbackHandler) – inherit (bool) – Return type None add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶ Parameters metadata (Dict[str, Any]) – inherit (bool) – Return type None add_tags(tags: List[str], inherit: bool = True) → None¶ Parameters tags (List[str]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
40df20695947-2
Parameters tags (List[str]) – inherit (bool) – Return type None classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → AsyncCallbackManager[source]¶ Configure the async callback manager. Parameters inheritable_callbacks (Optional[Callbacks], optional) – The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional) – The local callbacks. Defaults to None. verbose (bool, optional) – Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional) – The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional) – The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional) – The local metadata. Defaults to None. Returns The configured async callback manager. Return type AsyncCallbackManager copy() → T¶ Copy the callback manager. Parameters self (T) – Return type T async on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForChainRun[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – The serialized chain.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
40df20695947-3
Parameters serialized (Dict[str, Any]) – The serialized chain. inputs (Union[Dict[str, Any], Any]) – The inputs to the chain. run_id (UUID, optional) – The ID of the run. Defaults to None. kwargs (Any) – Returns The async callback managerfor the chain run. Return type AsyncCallbackManagerForChainRun async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], run_id: Optional[UUID] = None, **kwargs: Any) → List[AsyncCallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. messages (List[List[BaseMessage]]) – The list of messages. run_id (UUID, optional) – The ID of the run. Defaults to None. kwargs (Any) – Returns The list ofasync callback managers, one for each LLM Run corresponding to each inner message list. Return type List[AsyncCallbackManagerForLLMRun] async on_llm_start(serialized: Dict[str, Any], prompts: List[str], run_id: Optional[UUID] = None, **kwargs: Any) → List[AsyncCallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. prompts (List[str]) – The list of prompts. run_id (UUID, optional) – The ID of the run. Defaults to None. kwargs (Any) – Returns The list of asynccallback managers, one for each LLM Run corresponding to each prompt. Return type List[AsyncCallbackManagerForLLMRun]
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
40df20695947-4
to each prompt. Return type List[AsyncCallbackManagerForLLMRun] async on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForRetrieverRun[source]¶ Run when retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (Optional[UUID]) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type AsyncCallbackManagerForRetrieverRun async on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForToolRun[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – The serialized tool. input_str (str) – The input to the tool. run_id (UUID, optional) – The ID of the run. Defaults to None. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. kwargs (Any) – Returns The async callback managerfor the tool run. Return type AsyncCallbackManagerForToolRun remove_handler(handler: BaseCallbackHandler) → None¶ Remove a handler from the callback manager. Parameters handler (BaseCallbackHandler) – Return type None remove_metadata(keys: List[str]) → None¶ Parameters keys (List[str]) – Return type None remove_tags(tags: List[str]) → None¶ Parameters tags (List[str]) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
40df20695947-5
Parameters tags (List[str]) – Return type None set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Set handler as the only handler on the callback manager. Parameters handler (BaseCallbackHandler) – inherit (bool) – Return type None set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶ Set handlers as the only handlers on the callback manager. Parameters handlers (List[BaseCallbackHandler]) – inherit (bool) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
f11443a56745-0
langchain_community.callbacks.flyte_callback.FlyteCallbackHandler¶ class langchain_community.callbacks.flyte_callback.FlyteCallbackHandler[source]¶ Callback handler that is used within a Flyte task. Initialize callback handler. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__() Initialize callback handler. get_custom_callback_meta() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...])
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.flyte_callback.FlyteCallbackHandler.html
f11443a56745-1
on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when agent is ending. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. reset_callback_meta() Reset the callback metadata. __init__() → None[source]¶ Initialize callback handler. Return type None get_custom_callback_meta() → Dict[str, Any]¶ Return type Dict[str, Any] on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. Parameters action (AgentAction) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. Parameters finish (AgentFinish) – kwargs (Any) – Return type None on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (BaseException) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.flyte_callback.FlyteCallbackHandler.html
f11443a56745-2
error (BaseException) – kwargs (Any) – Return type None on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.flyte_callback.FlyteCallbackHandler.html
f11443a56745-3
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. Parameters token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.flyte_callback.FlyteCallbackHandler.html
f11443a56745-4
query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, **kwargs: Any) → None[source]¶ Run when agent is ending. Parameters text (str) – kwargs (Any) – Return type None on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. Parameters output (str) – kwargs (Any) – Return type None on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – kwargs (Any) – Return type None reset_callback_meta() → None¶ Reset the callback metadata. Return type None Examples using FlyteCallbackHandler¶ Flyte
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.flyte_callback.FlyteCallbackHandler.html
f727072f3409-0
langchain_core.callbacks.manager.atrace_as_chain_group¶ langchain_core.callbacks.manager.atrace_as_chain_group(group_name: str, callback_manager: Optional[AsyncCallbackManager] = None, *, inputs: Optional[Dict[str, Any]] = None, project_name: Optional[str] = None, example_id: Optional[Union[str, UUID]] = None, run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None) → AsyncGenerator[AsyncCallbackManagerForChainGroup, None][source]¶ Get an async callback manager for a chain group in a context manager. Useful for grouping different async calls together as a single run even if they aren’t composed in a single chain. Parameters group_name (str) – The name of the chain group. callback_manager (AsyncCallbackManager, optional) – The async callback manager to use, which manages tracing and other callback behavior. project_name (str, optional) – The name of the project. Defaults to None. example_id (str or UUID, optional) – The ID of the example. Defaults to None. run_id (UUID, optional) – The ID of the run. tags (List[str], optional) – The inheritable tags to apply to all runs. Defaults to None. metadata (Dict[str, Any], optional) – The metadata to apply to all runs. Defaults to None. inputs (Optional[Dict[str, Any]]) – Returns The async callback manager for the chain group. Return type AsyncCallbackManager Note: must have LANGCHAIN_TRACING_V2 env var set to true to see the trace in LangSmith. Example llm_input = "Foo" async with atrace_as_chain_group("group_name", inputs={"input": llm_input}) as manager:
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.atrace_as_chain_group.html
f727072f3409-1
# Use the async callback manager for the chain group res = await llm.ainvoke(llm_input, {"callbacks": manager}) await manager.on_chain_end({"output": res})
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.atrace_as_chain_group.html
0a485b457467-0
langchain_core.callbacks.manager.BaseRunManager¶ class langchain_core.callbacks.manager.BaseRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Base class for run manager (a bound callback manager). Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_noop_manager() Return a manager that doesn't perform any operations. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.BaseRunManager.html
0a485b457467-1
Run on arbitrary text. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None[source]¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Return type None classmethod get_noop_manager() → BRM[source]¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.BaseRunManager.html
0a485b457467-2
Run on arbitrary text. Parameters text (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.BaseRunManager.html
d12fb8337a00-0
langchain_community.callbacks.tracers.comet.import_comet_llm_api¶ langchain_community.callbacks.tracers.comet.import_comet_llm_api() → SimpleNamespace[source]¶ Import comet_llm api and raise an error if it is not installed. Return type SimpleNamespace
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.import_comet_llm_api.html
8e3152136ab6-0
langchain_core.callbacks.base.BaseCallbackManager¶ class langchain_core.callbacks.base.BaseCallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Base callback manager that handles callbacks from LangChain. Initialize callback manager. Attributes is_async Whether the callback manager is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) copy() Copy the callback manager. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager. Parameters handlers (List[BaseCallbackHandler]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackManager.html
8e3152136ab6-1
Parameters handlers (List[BaseCallbackHandler]) – inheritable_handlers (Optional[List[BaseCallbackHandler]]) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – inheritable_tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inheritable_metadata (Optional[Dict[str, Any]]) – __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None[source]¶ Initialize callback manager. Parameters handlers (List[BaseCallbackHandler]) – inheritable_handlers (Optional[List[BaseCallbackHandler]]) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – inheritable_tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inheritable_metadata (Optional[Dict[str, Any]]) – Return type None add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None[source]¶ Add a handler to the callback manager. Parameters handler (BaseCallbackHandler) – inherit (bool) – Return type None add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None[source]¶ Parameters metadata (Dict[str, Any]) – inherit (bool) – Return type None add_tags(tags: List[str], inherit: bool = True) → None[source]¶ Parameters tags (List[str]) – inherit (bool) –
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackManager.html
8e3152136ab6-2
Parameters tags (List[str]) – inherit (bool) – Return type None copy() → T[source]¶ Copy the callback manager. Parameters self (T) – Return type T on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackManager.html
8e3152136ab6-3
kwargs (Any) – Return type Any on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. ATTENTION: This method is called for non-chat models (regular LLMs). Ifyou’re implementing a handler for a chat model, you should use on_chat_model_start instead. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackManager.html
8e3152136ab6-4
kwargs (Any) – Return type Any on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inputs (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any remove_handler(handler: BaseCallbackHandler) → None[source]¶ Remove a handler from the callback manager. Parameters handler (BaseCallbackHandler) – Return type None remove_metadata(keys: List[str]) → None[source]¶ Parameters keys (List[str]) – Return type None remove_tags(tags: List[str]) → None[source]¶ Parameters tags (List[str]) – Return type None set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None[source]¶ Set handler as the only handler on the callback manager. Parameters handler (BaseCallbackHandler) – inherit (bool) – Return type None set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None[source]¶ Set handlers as the only handlers on the callback manager. Parameters handlers (List[BaseCallbackHandler]) – inherit (bool) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackManager.html
d46a6e2123c9-0
langchain_community.callbacks.mlflow_callback.get_text_complexity_metrics¶ langchain_community.callbacks.mlflow_callback.get_text_complexity_metrics() → List[str][source]¶ Get the text complexity metrics from textstat. Return type List[str]
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.get_text_complexity_metrics.html
639c3703d430-0
langchain_community.callbacks.utils.load_json¶ langchain_community.callbacks.utils.load_json(json_path: Union[str, Path]) → str[source]¶ Load json file to a string. Parameters json_path (str) – The path to the json file. Returns The string representation of the json file. Return type (str)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.load_json.html
89ca614517a9-0
langchain_community.callbacks.uptrain_callback.import_uptrain¶ langchain_community.callbacks.uptrain_callback.import_uptrain() → Any[source]¶ Import the uptrain package. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.import_uptrain.html
f76a82b8e767-0
langchain_core.callbacks.manager.AsyncCallbackManagerForChainRun¶ class langchain_core.callbacks.manager.AsyncCallbackManagerForChainRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async callback manager for chain run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. get_sync() Get the equivalent sync RunManager. on_agent_action(action, **kwargs) Run when agent action is received. on_agent_finish(finish, **kwargs) Run when agent finish is received. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForChainRun.html
f76a82b8e767-1
on_chain_error(error, **kwargs) Run when chain errors. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Return type None get_child(tag: Optional[str] = None) → AsyncCallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type AsyncCallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager get_sync() → CallbackManagerForChainRun[source]¶ Get the equivalent sync RunManager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForChainRun.html
f76a82b8e767-2
Get the equivalent sync RunManager. Returns The sync RunManager. Return type CallbackManagerForChainRun async on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run when agent action is received. Parameters action (AgentAction) – The agent action. kwargs (Any) – Returns The result of the callback. Return type Any async on_agent_finish(finish: AgentFinish, **kwargs: Any) → Any[source]¶ Run when agent finish is received. Parameters finish (AgentFinish) – The agent finish. kwargs (Any) – Returns The result of the callback. Return type Any async on_chain_end(outputs: Union[Dict[str, Any], Any], **kwargs: Any) → None[source]¶ Run when chain ends running. Parameters outputs (Union[Dict[str, Any], Any]) – The outputs of the chain. kwargs (Any) – Return type None async on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (Exception or KeyboardInterrupt) – The error. kwargs (Any) – Return type None async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. Parameters retry_state (RetryCallState) – kwargs (Any) – Return type None async on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. kwargs (Any) – Returns The result of the callback. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForChainRun.html
5af1b3c40c9a-0
langchain_community.callbacks.utils.flatten_dict¶ langchain_community.callbacks.utils.flatten_dict(nested_dict: Dict[str, Any], parent_key: str = '', sep: str = '_') → Dict[str, Any][source]¶ Flatten a nested dictionary into a flat dictionary. Parameters nested_dict (dict) – The nested dictionary to flatten. parent_key (str) – The prefix to prepend to the keys of the flattened dict. sep (str) – The separator to use between the parent key and the key of the flattened dictionary. Returns A flat dictionary. Return type (dict)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.flatten_dict.html
f2cd4c93c04d-0
langchain_core.callbacks.manager.CallbackManager¶ class langchain_core.callbacks.manager.CallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager that handles callbacks from LangChain. Initialize callback manager. Attributes is_async Whether the callback manager is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) configure([inheritable_callbacks, ...]) Configure the callback manager. copy() Copy the callback manager. on_chain_start(serialized, inputs[, run_id]) Run when chain starts running. on_chat_model_start(serialized, messages[, ...]) Run when LLM starts running. on_llm_start(serialized, prompts[, run_id]) Run when LLM starts running. on_retriever_start(serialized, query[, ...]) Run when retriever starts running. on_tool_start(serialized, input_str[, ...]) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager. Parameters handlers (List[BaseCallbackHandler]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
f2cd4c93c04d-1
Parameters handlers (List[BaseCallbackHandler]) – inheritable_handlers (Optional[List[BaseCallbackHandler]]) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – inheritable_tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inheritable_metadata (Optional[Dict[str, Any]]) – __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize callback manager. Parameters handlers (List[BaseCallbackHandler]) – inheritable_handlers (Optional[List[BaseCallbackHandler]]) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – inheritable_tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inheritable_metadata (Optional[Dict[str, Any]]) – Return type None add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Add a handler to the callback manager. Parameters handler (BaseCallbackHandler) – inherit (bool) – Return type None add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶ Parameters metadata (Dict[str, Any]) – inherit (bool) – Return type None add_tags(tags: List[str], inherit: bool = True) → None¶ Parameters tags (List[str]) – inherit (bool) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
f2cd4c93c04d-2
tags (List[str]) – inherit (bool) – Return type None classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → CallbackManager[source]¶ Configure the callback manager. Parameters inheritable_callbacks (Optional[Callbacks], optional) – The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional) – The local callbacks. Defaults to None. verbose (bool, optional) – Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional) – The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional) – The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional) – The local metadata. Defaults to None. Returns The configured callback manager. Return type CallbackManager copy() → T¶ Copy the callback manager. Parameters self (T) – Return type T on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForChainRun[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – The serialized chain.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
f2cd4c93c04d-3
Parameters serialized (Dict[str, Any]) – The serialized chain. inputs (Union[Dict[str, Any], Any]) – The inputs to the chain. run_id (UUID, optional) – The ID of the run. Defaults to None. kwargs (Any) – Returns The callback manager for the chain run. Return type CallbackManagerForChainRun on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], run_id: Optional[UUID] = None, **kwargs: Any) → List[CallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. messages (List[List[BaseMessage]]) – The list of messages. run_id (UUID, optional) – The ID of the run. Defaults to None. kwargs (Any) – Returns A callback manager for eachlist of messages as an LLM run. Return type List[CallbackManagerForLLMRun] on_llm_start(serialized: Dict[str, Any], prompts: List[str], run_id: Optional[UUID] = None, **kwargs: Any) → List[CallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. prompts (List[str]) – The list of prompts. run_id (UUID, optional) – The ID of the run. Defaults to None. kwargs (Any) – Returns A callback manager for eachprompt as an LLM run. Return type List[CallbackManagerForLLMRun]
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
f2cd4c93c04d-4
Return type List[CallbackManagerForLLMRun] on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForRetrieverRun[source]¶ Run when retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (Optional[UUID]) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type CallbackManagerForRetrieverRun on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → CallbackManagerForToolRun[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – Serialized representation of the tool. input_str (str) – The input to the tool as a string. Non-string inputs are cast to strings. run_id (Optional[UUID]) – ID for the run. Defaults to None. parent_run_id (Optional[UUID]) – The ID of the parent run. Defaults to None. inputs (Optional[Dict[str, Any]]) – The original input to the tool if provided. Recommended for usage instead of input_str when the original input is needed. If provided, the inputs are expected to be formatted as a dict. The keys will correspond to the named-arguments in the tool. kwargs (Any) – Returns The callback manager for the tool run. Return type CallbackManagerForToolRun remove_handler(handler: BaseCallbackHandler) → None¶ Remove a handler from the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
f2cd4c93c04d-5
Remove a handler from the callback manager. Parameters handler (BaseCallbackHandler) – Return type None remove_metadata(keys: List[str]) → None¶ Parameters keys (List[str]) – Return type None remove_tags(tags: List[str]) → None¶ Parameters tags (List[str]) – Return type None set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Set handler as the only handler on the callback manager. Parameters handler (BaseCallbackHandler) – inherit (bool) – Return type None set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶ Set handlers as the only handlers on the callback manager. Parameters handlers (List[BaseCallbackHandler]) – inherit (bool) – Return type None Examples using CallbackManager¶ ChatLiteLLM ChatLiteLLMRouter GPTRouter Llama.cpp Run LLMs locally Titan Takeoff ZHIPU AI
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
e14662daf8ca-0
langchain_community.callbacks.mlflow_callback.mlflow_callback_metrics¶ langchain_community.callbacks.mlflow_callback.mlflow_callback_metrics() → List[str][source]¶ Get the metrics to log to MLFlow. Return type List[str]
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.mlflow_callback_metrics.html
a77d0fdc8368-0
langchain_community.callbacks.labelstudio_callback.LabelStudioMode¶ class langchain_community.callbacks.labelstudio_callback.LabelStudioMode(value)[source]¶ Label Studio mode enumerator. PROMPT = 'prompt'¶ CHAT = 'chat'¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.labelstudio_callback.LabelStudioMode.html
b34f3954c38b-0
langchain_community.callbacks.tracers.wandb.WandbRunArgs¶ class langchain_community.callbacks.tracers.wandb.WandbRunArgs[source]¶ Arguments for the WandbTracer. job_type: Optional[str]¶ dir: Optional[StrPath]¶ config: Union[Dict, str, None]¶ project: Optional[str]¶ entity: Optional[str]¶ reinit: Optional[bool]¶ tags: Optional[Sequence]¶ group: Optional[str]¶ name: Optional[str]¶ notes: Optional[str]¶ magic: Optional[Union[dict, str, bool]]¶ config_exclude_keys: Optional[List[str]]¶ config_include_keys: Optional[List[str]]¶ anonymous: Optional[str]¶ mode: Optional[str]¶ allow_val_change: Optional[bool]¶ resume: Optional[Union[bool, str]]¶ force: Optional[bool]¶ tensorboard: Optional[bool]¶ sync_tensorboard: Optional[bool]¶ monitor_gym: Optional[bool]¶ save_code: Optional[bool]¶ id: Optional[str]¶ settings: Union[WBSettings, Dict[str, Any], None]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbRunArgs.html
ac2732f93d6f-0
langchain_community.callbacks.arthur_callback.ArthurCallbackHandler¶ class langchain_community.callbacks.arthur_callback.ArthurCallbackHandler(arthur_model: ArthurModel)[source]¶ Callback Handler that logs to Arthur platform. Arthur helps enterprise teams optimize model operations and performance at scale. The Arthur API tracks model performance, explainability, and fairness across tabular, NLP, and CV models. Our API is model- and platform-agnostic, and continuously scales with complex and dynamic enterprise needs. To learn more about Arthur, visit our website at https://www.arthur.ai/ or read the Arthur docs at https://docs.arthur.ai/ Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(arthur_model) Initialize callback handler. from_credentials(model_id[, arthur_url, ...]) Initialize callback handler from Arthur credentials. on_agent_action(action, **kwargs) Do nothing when agent takes a specific action. on_agent_finish(finish, **kwargs) Do nothing on_chain_end(outputs, **kwargs) On chain end, do nothing. on_chain_error(error, **kwargs) Do nothing when LLM chain outputs an error. on_chain_start(serialized, inputs, **kwargs) On chain start, do nothing. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) On LLM end, send data to Arthur.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html
ac2732f93d6f-1
On LLM end, send data to Arthur. on_llm_error(error, **kwargs) Do nothing when LLM outputs an error. on_llm_new_token(token, **kwargs) On new token, pass. on_llm_start(serialized, prompts, **kwargs) On LLM start, save the input prompts on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Do nothing on_tool_end(output[, observation_prefix, ...]) Do nothing when tool ends. on_tool_error(error, **kwargs) Do nothing when tool outputs an error. on_tool_start(serialized, input_str, **kwargs) Do nothing when tool starts. Parameters arthur_model (ArthurModel) – __init__(arthur_model: ArthurModel) → None[source]¶ Initialize callback handler. Parameters arthur_model (ArthurModel) – Return type None classmethod from_credentials(model_id: str, arthur_url: Optional[str] = 'https://app.arthur.ai', arthur_login: Optional[str] = None, arthur_password: Optional[str] = None) → ArthurCallbackHandler[source]¶ Initialize callback handler from Arthur credentials. Parameters model_id (str) – The ID of the arthur model to log to.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html
ac2732f93d6f-2
Parameters model_id (str) – The ID of the arthur model to log to. arthur_url (str, optional) – The URL of the Arthur instance to log to. Defaults to “https://app.arthur.ai”. arthur_login (str, optional) – The login to use to connect to Arthur. Defaults to None. arthur_password (str, optional) – The password to use to connect to Arthur. Defaults to None. Returns The initialized callback handler. Return type ArthurCallbackHandler on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing when agent takes a specific action. Parameters action (AgentAction) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Do nothing Parameters finish (AgentFinish) – kwargs (Any) – Return type None on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ On chain end, do nothing. Parameters outputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM chain outputs an error. Parameters error (BaseException) – kwargs (Any) – Return type None on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ On chain start, do nothing. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html
ac2732f93d6f-3
kwargs (Any) – Return type None on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ On LLM end, send data to Arthur. Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM outputs an error. Parameters error (BaseException) – kwargs (Any) – Return type None on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ On new token, pass. Parameters token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ On LLM start, save the input prompts Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html
ac2732f93d6f-4
On LLM start, save the input prompts Parameters serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html
ac2732f93d6f-5
Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, **kwargs: Any) → None[source]¶ Do nothing Parameters text (str) – kwargs (Any) – Return type None on_tool_end(output: Any, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Do nothing when tool ends. Parameters output (Any) – observation_prefix (Optional[str]) – llm_prefix (Optional[str]) – kwargs (Any) – Return type None on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when tool outputs an error. Parameters error (BaseException) – kwargs (Any) – Return type None on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Do nothing when tool starts. Parameters serialized (Dict[str, Any]) – input_str (str) – kwargs (Any) – Return type None Examples using ArthurCallbackHandler¶ Arthur
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html
616b35e7ecaf-0
langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler¶ class langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler[source]¶ Callback handler for streaming. Only works with LLMs that support streaming. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run on agent end. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, ...) Run when LLM starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run on new LLM token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html
616b35e7ecaf-1
Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run on arbitrary text. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. __init__()¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. Parameters action (AgentAction) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run on agent end. Parameters finish (AgentFinish) – kwargs (Any) – Return type None on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html
616b35e7ecaf-2
kwargs (Any) – Return type None on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → None[source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – kwargs (Any) – Return type None on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html
616b35e7ecaf-3
kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, **kwargs: Any) → None[source]¶ Run on arbitrary text. Parameters text (str) – kwargs (Any) – Return type None on_tool_end(output: Any, **kwargs: Any) → None[source]¶ Run when tool ends running. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html
616b35e7ecaf-4
Run when tool ends running. Parameters output (Any) – kwargs (Any) – Return type None on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – kwargs (Any) – Return type None Examples using StreamingStdOutCallbackHandler¶ Arthur Bedrock C Transformers Chat Over Documents with Vectara ChatEverlyAI ChatLiteLLM ChatLiteLLMRouter DeepInfra Eden AI ExLlamaV2 GPT4All GPTRouter Huggingface Endpoints Llama.cpp Replicate Run LLMs locally TextGen Titan Takeoff Yuan2.0 ZHIPU AI
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html
6518ca259ebf-0
langchain_community.callbacks.flyte_callback.import_flytekit¶ langchain_community.callbacks.flyte_callback.import_flytekit() → Tuple[flytekit, renderer][source]¶ Import flytekit and flytekitplugins-deck-standard. Return type Tuple[flytekit, renderer]
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.flyte_callback.import_flytekit.html
4839211431fb-0
langchain_core.callbacks.manager.RunManager¶ class langchain_core.callbacks.manager.RunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Sync Run Manager. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_noop_manager() Return a manager that doesn't perform any operations. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.RunManager.html
4839211431fb-1
on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Return type None classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_retry(retry_state: RetryCallState, **kwargs: Any) → None[source]¶ Run on a retry event. Parameters retry_state (RetryCallState) – kwargs (Any) – Return type None on_text(text: str, **kwargs: Any) → Any[source]¶ Run when text is received. Parameters text (str) – The received text. kwargs (Any) – Returns The result of the callback. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.RunManager.html
8f25ec5de7e9-0
langchain_community.callbacks.streamlit.mutable_expander.ChildRecord¶ class langchain_community.callbacks.streamlit.mutable_expander.ChildRecord(type: ChildType, kwargs: Dict[str, Any], dg: DeltaGenerator)[source]¶ Child record as a NamedTuple. Create new instance of ChildRecord(type, kwargs, dg) Attributes dg Alias for field number 2 kwargs Alias for field number 1 type Alias for field number 0 Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. Parameters type (ChildType) – kwargs (Dict[str, Any]) – dg (DeltaGenerator) – __init__()¶ count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.mutable_expander.ChildRecord.html
6e2d02004315-0
langchain_community.callbacks.manager.get_bedrock_anthropic_callback¶ langchain_community.callbacks.manager.get_bedrock_anthropic_callback() → Generator[BedrockAnthropicTokenUsageCallbackHandler, None, None][source]¶ Get the Bedrock anthropic callback handler in a context manager. which conveniently exposes token and cost information. Returns The Bedrock anthropic callback handler. Return type BedrockAnthropicTokenUsageCallbackHandler Example >>> with get_bedrock_anthropic_callback() as cb: ... # Use the Bedrock anthropic callback handler Examples using get_bedrock_anthropic_callback¶ How to track token usage in ChatModels
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.manager.get_bedrock_anthropic_callback.html
cf8c4a00e836-0
langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler¶ class langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler(run: Any)[source]¶ Callback Handler that logs prompt artifacts and metrics to SageMaker Experiments. Parameters run (sagemaker.experiments.run.Run) – Run object where the experiment is logged. Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(run) Initialize callback handler. flush_tracker() Reset the steps and delete the temporary local directory. jsonf(data, data_dir, filename[, is_output]) To log the input data as json file artifact. on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler.html
cf8c4a00e836-1
on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when agent is ending. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. __init__(run: Any) → None[source]¶ Initialize callback handler. Parameters run (Any) – Return type None flush_tracker() → None[source]¶ Reset the steps and delete the temporary local directory. Return type None jsonf(data: Dict[str, Any], data_dir: str, filename: str, is_output: Optional[bool] = True) → None[source]¶ To log the input data as json file artifact. Parameters data (Dict[str, Any]) – data_dir (str) – filename (str) – is_output (Optional[bool]) – Return type None on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. Parameters action (AgentAction) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler.html
cf8c4a00e836-2
action (AgentAction) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. Parameters finish (AgentFinish) – kwargs (Any) – Return type None on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler.html
cf8c4a00e836-3
parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. Parameters token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler.html
cf8c4a00e836-4
Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, **kwargs: Any) → None[source]¶ Run when agent is ending. Parameters text (str) – kwargs (Any) – Return type None on_tool_end(output: Any, **kwargs: Any) → None[source]¶ Run when tool ends running. Parameters output (Any) – kwargs (Any) – Return type None on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler.html
cf8c4a00e836-5
Run when tool errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – kwargs (Any) – Return type None Examples using SageMakerCallbackHandler¶ AWS SageMaker Tracking
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler.html