|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{vilares-gomez-rodriguez-2019-head, |
|
title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning", |
|
author = "Vilares, David and |
|
G{\'o}mez-Rodr{\'i}guez, Carlos", |
|
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2019", |
|
address = "Florence, Italy", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/P19-1092", |
|
doi = "10.18653/v1/P19-1092", |
|
pages = "960--966", |
|
abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the |
|
Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio |
|
de Sanidad, Consumo y Bienestar Social. |
|
|
|
The dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology. |
|
""" |
|
|
|
_HOMEPAGE = "https://aghie.github.io/head-qa/" |
|
|
|
_LICENSE = "MIT License" |
|
|
|
_URL = "https://drive.google.com/u/0/uc?export=download&id=1a_95N5zQQoUCq8IBNVZgziHbeM-QxG2t" |
|
|
|
_DIRS = {"es": "HEAD", "en": "HEAD_EN"} |
|
|
|
|
|
class HeadQA(datasets.GeneratorBasedBuilder): |
|
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="es", version=VERSION, description="Spanish HEAD dataset"), |
|
datasets.BuilderConfig(name="en", version=VERSION, description="English HEAD dataset"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "es" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"name": datasets.Value("string"), |
|
"year": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"qid": datasets.Value("int32"), |
|
"qtext": datasets.Value("string"), |
|
"ra": datasets.Value("int32"), |
|
"image": datasets.Image(), |
|
"answers": [ |
|
{ |
|
"aid": datasets.Value("int32"), |
|
"atext": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
|
|
dir = _DIRS[self.config.name] |
|
data_lang_dir = os.path.join(data_dir, dir) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"train_{dir}.json")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"test_{dir}.json")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"dev_{dir}.json")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
head_qa = json.load(f) |
|
for exam_id, exam in enumerate(head_qa["exams"]): |
|
content = head_qa["exams"][exam] |
|
name = content["name"].strip() |
|
year = content["year"].strip() |
|
category = content["category"].strip() |
|
for question in content["data"]: |
|
qid = int(question["qid"].strip()) |
|
qtext = question["qtext"].strip() |
|
ra = int(question["ra"].strip()) |
|
image_path = question["image"].strip() |
|
|
|
aids = [answer["aid"] for answer in question["answers"]] |
|
atexts = [answer["atext"].strip() for answer in question["answers"]] |
|
answers = [{"aid": aid, "atext": atext} for aid, atext in zip(aids, atexts)] |
|
|
|
id_ = f"{exam_id}_{qid}" |
|
yield id_, { |
|
"name": name, |
|
"year": year, |
|
"category": category, |
|
"qid": qid, |
|
"qtext": qtext, |
|
"ra": ra, |
|
"image": os.path.join(data_dir, image_path) if image_path else None, |
|
"answers": answers, |
|
} |
|
|