Datasets:
Commit
·
3d5cc7c
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +249 -0
- dataset_infos.json +1 -0
- dummy/en/1.1.0/dummy_data.zip +3 -0
- dummy/es/1.1.0/dummy_data.zip +3 -0
- head_qa.py +148 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- no-annotation
|
4 |
+
language_creators:
|
5 |
+
- expert-generated
|
6 |
+
languages:
|
7 |
+
en:
|
8 |
+
- en
|
9 |
+
es:
|
10 |
+
- es
|
11 |
+
licenses:
|
12 |
+
- mit
|
13 |
+
multilinguality:
|
14 |
+
- monolingual
|
15 |
+
size_categories:
|
16 |
+
- 1K<n<10K
|
17 |
+
source_datasets:
|
18 |
+
- original
|
19 |
+
task_categories:
|
20 |
+
- question-answering
|
21 |
+
task_ids:
|
22 |
+
- multiple-choice-qa
|
23 |
+
---
|
24 |
+
|
25 |
+
# Dataset Card for HEAD-QA
|
26 |
+
|
27 |
+
## Table of Contents
|
28 |
+
- [Dataset Description](#dataset-description)
|
29 |
+
- [Dataset Summary](#dataset-summary)
|
30 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
31 |
+
- [Languages](#languages)
|
32 |
+
- [Dataset Structure](#dataset-structure)
|
33 |
+
- [Data Instances](#data-instances)
|
34 |
+
- [Data Fields](#data-fields)
|
35 |
+
- [Data Splits](#data-splits)
|
36 |
+
- [Dataset Creation](#dataset-creation)
|
37 |
+
- [Curation Rationale](#curation-rationale)
|
38 |
+
- [Source Data](#source-data)
|
39 |
+
- [Annotations](#annotations)
|
40 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
41 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
42 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
43 |
+
- [Discussion of Biases](#discussion-of-biases)
|
44 |
+
- [Other Known Limitations](#other-known-limitations)
|
45 |
+
- [Additional Information](#additional-information)
|
46 |
+
- [Dataset Curators](#dataset-curators)
|
47 |
+
- [Licensing Information](#licensing-information)
|
48 |
+
- [Citation Information](#citation-information)
|
49 |
+
|
50 |
+
## Dataset Description
|
51 |
+
|
52 |
+
- **Homepage:** [HEAD-QA homepage](https://aghie.github.io/head-qa/)
|
53 |
+
- **Repository:** [HEAD-QA repository](https://github.com/aghie/head-qa)
|
54 |
+
- **Paper:** [HEAD-QA: A Healthcare Dataset for Complex Reasoning](https://www.aclweb.org/anthology/P19-1092/)
|
55 |
+
- **Leaderboard:** [HEAD-QA leaderboard](https://aghie.github.io/head-qa/#leaderboard-general)
|
56 |
+
- **Point of Contact:** [María Grandury](mailto:[email protected]) (Dataset Submitter)
|
57 |
+
|
58 |
+
### Dataset Summary
|
59 |
+
|
60 |
+
HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the
|
61 |
+
Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the
|
62 |
+
[Ministerio de Sanidad, Consumo y Bienestar Social](https://www.mscbs.gob.es/), who also provides direct
|
63 |
+
[access](https://fse.mscbs.gob.es/fseweb/view/public/datosanteriores/cuadernosExamen/busquedaConvocatoria.xhtml)
|
64 |
+
to the exams of the last 5 years (in Spanish).
|
65 |
+
|
66 |
+
```
|
67 |
+
Date of the last update of the documents object of the reuse: January, 14th, 2019.
|
68 |
+
```
|
69 |
+
|
70 |
+
HEAD-QA tries to make these questions accesible for the Natural Language Processing community. We hope it is an useful resource towards achieving better QA systems. The dataset contains questions about the following topics:
|
71 |
+
- Medicine
|
72 |
+
- Nursing
|
73 |
+
- Psychology
|
74 |
+
- Chemistry
|
75 |
+
- Pharmacology
|
76 |
+
- Biology
|
77 |
+
|
78 |
+
### Supported Tasks and Leaderboards
|
79 |
+
|
80 |
+
- `multiple-choice-qa`: HEAD-QA is a multi-choice question answering testbed to encourage research on complex reasoning.
|
81 |
+
|
82 |
+
### Languages
|
83 |
+
|
84 |
+
The questions and answers are available in both Spanish (BCP-47 code: 'es-ES') and English (BCP-47 code: 'en').
|
85 |
+
|
86 |
+
The language by default is Spanish:
|
87 |
+
```
|
88 |
+
from datasets import load_dataset
|
89 |
+
|
90 |
+
data_es = load_dataset('head_qa')
|
91 |
+
|
92 |
+
data_en = load_dataset('head_qa', 'en')
|
93 |
+
```
|
94 |
+
|
95 |
+
## Dataset Structure
|
96 |
+
|
97 |
+
### Data Instances
|
98 |
+
|
99 |
+
A typical data point comprises a question `qtext`, multiple possible answers `atext` and the right answer `ra`.
|
100 |
+
|
101 |
+
An example from the HEAD-QA dataset looks as follows:
|
102 |
+
```
|
103 |
+
{
|
104 |
+
'qid': '1',
|
105 |
+
'category': 'biology',
|
106 |
+
'qtext': 'Los potenciales postsinápticos excitadores:',
|
107 |
+
'answers': [
|
108 |
+
{
|
109 |
+
'aid': 1,
|
110 |
+
'atext': 'Son de tipo todo o nada.'
|
111 |
+
},
|
112 |
+
{
|
113 |
+
'aid': 2,
|
114 |
+
'atext': 'Son hiperpolarizantes.'
|
115 |
+
},
|
116 |
+
{
|
117 |
+
'aid': 3,
|
118 |
+
'atext': 'Se pueden sumar.'
|
119 |
+
},
|
120 |
+
{
|
121 |
+
'aid': 4,
|
122 |
+
'atext': 'Se propagan a largas distancias.'
|
123 |
+
},
|
124 |
+
{
|
125 |
+
'aid': 5,
|
126 |
+
'atext': 'Presentan un periodo refractario.'
|
127 |
+
}],
|
128 |
+
'ra': '3',
|
129 |
+
'image': '',
|
130 |
+
'name': 'Cuaderno_2013_1_B',
|
131 |
+
'year': '2013'
|
132 |
+
}
|
133 |
+
```
|
134 |
+
|
135 |
+
### Data Fields
|
136 |
+
|
137 |
+
- `qid`: question identifier (int)
|
138 |
+
- `category`: category of the question: "medicine", "nursing", "psychology", "chemistry", "pharmacology", "biology"
|
139 |
+
- `qtext`: question text
|
140 |
+
- `answers`: list of possible answers. Each element of the list is a dictionary with 2 keys:
|
141 |
+
- `aid`: answer identifier (int)
|
142 |
+
- `atext`: answer text
|
143 |
+
- `ra`: `aid` of the right answer (int)
|
144 |
+
- `image`: optional, some of the questions refer to an image
|
145 |
+
- `name`: name of the exam from which the question was extracted
|
146 |
+
- `year`: year in which the exam took place
|
147 |
+
|
148 |
+
### Data Splits
|
149 |
+
|
150 |
+
The data is split into train, validation and test set for each of the two languages. The split sizes are as follow:
|
151 |
+
|
152 |
+
| | Train | Val | Test |
|
153 |
+
| ----- | ------ | ----- | ---- |
|
154 |
+
| Spanish | 2657 | 1366 | 2742 |
|
155 |
+
| English | 2657 | 1366 | 2742 |
|
156 |
+
|
157 |
+
## Dataset Creation
|
158 |
+
|
159 |
+
### Curation Rationale
|
160 |
+
|
161 |
+
As motivation for the creation of this dataset, here is the abstract of the paper:
|
162 |
+
|
163 |
+
"We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions
|
164 |
+
come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly
|
165 |
+
specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information
|
166 |
+
retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well
|
167 |
+
behind human performance, demonstrating its usefulness as a benchmark for future work."
|
168 |
+
|
169 |
+
### Source Data
|
170 |
+
|
171 |
+
#### Initial Data Collection and Normalization
|
172 |
+
|
173 |
+
The questions come from exams to access a specialized position in the Spanish healthcare system, and are designed by the
|
174 |
+
[Ministerio de Sanidad, Consumo y Bienestar Social](https://www.mscbs.gob.es/), who also provides direct
|
175 |
+
[access](https://fse.mscbs.gob.es/fseweb/view/public/datosanteriores/cuadernosExamen/busquedaConvocatoria.xhtml)
|
176 |
+
to the exams of the last 5 years (in Spanish).
|
177 |
+
|
178 |
+
#### Who are the source language producers?
|
179 |
+
|
180 |
+
The dataset was created by David Vilares and Carlos Gómez-Rodríguez.
|
181 |
+
|
182 |
+
### Annotations
|
183 |
+
|
184 |
+
The dataset does not contain any additional annotations.
|
185 |
+
|
186 |
+
#### Annotation process
|
187 |
+
|
188 |
+
[N/A]
|
189 |
+
|
190 |
+
#### Who are the annotators?
|
191 |
+
|
192 |
+
[N/A]
|
193 |
+
|
194 |
+
### Personal and Sensitive Information
|
195 |
+
|
196 |
+
[More Information Needed]
|
197 |
+
|
198 |
+
## Considerations for Using the Data
|
199 |
+
|
200 |
+
### Social Impact of Dataset
|
201 |
+
|
202 |
+
[More Information Needed]
|
203 |
+
|
204 |
+
### Discussion of Biases
|
205 |
+
|
206 |
+
[More Information Needed]
|
207 |
+
|
208 |
+
### Other Known Limitations
|
209 |
+
|
210 |
+
[More Information Needed]
|
211 |
+
|
212 |
+
## Additional Information
|
213 |
+
|
214 |
+
### Dataset Curators
|
215 |
+
|
216 |
+
The dataset was created by David Vilares and Carlos Gómez-Rodríguez.
|
217 |
+
|
218 |
+
### Licensing Information
|
219 |
+
|
220 |
+
According to the [HEAD-QA homepage](https://aghie.github.io/head-qa/#legal-requirements):
|
221 |
+
|
222 |
+
The Ministerio de Sanidad, Consumo y Biniestar Social allows the redistribution of the exams and their content under [certain conditions:](https://www.mscbs.gob.es/avisoLegal/home.htm)
|
223 |
+
|
224 |
+
- The denaturalization of the content of the information is prohibited in any circumstance.
|
225 |
+
- The user is obliged to cite the source of the documents subject to reuse.
|
226 |
+
- The user is obliged to indicate the date of the last update of the documents object of the reuse.
|
227 |
+
|
228 |
+
According to the [HEAD-QA repository](https://github.com/aghie/head-qa/blob/master/LICENSE):
|
229 |
+
|
230 |
+
The dataset is licensed under the [MIT License](https://mit-license.org/).
|
231 |
+
|
232 |
+
### Citation Information
|
233 |
+
|
234 |
+
```
|
235 |
+
@inproceedings{vilares-gomez-rodriguez-2019-head,
|
236 |
+
title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning",
|
237 |
+
author = "Vilares, David and
|
238 |
+
G{\'o}mez-Rodr{\'i}guez, Carlos",
|
239 |
+
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
|
240 |
+
month = jul,
|
241 |
+
year = "2019",
|
242 |
+
address = "Florence, Italy",
|
243 |
+
publisher = "Association for Computational Linguistics",
|
244 |
+
url = "https://www.aclweb.org/anthology/P19-1092",
|
245 |
+
doi = "10.18653/v1/P19-1092",
|
246 |
+
pages = "960--966",
|
247 |
+
abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.",
|
248 |
+
}
|
249 |
+
```
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"es": {"description": "HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the\nSpanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio\nde Sanidad, Consumo y Bienestar Social.\n\nThe dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology.\n", "citation": "@inproceedings{vilares-gomez-rodriguez-2019-head,\n title = \"{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning\",\n author = \"Vilares, David and\n G{'o}mez-Rodr{'i}guez, Carlos\",\n booktitle = \"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2019\",\n address = \"Florence, Italy\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P19-1092\",\n doi = \"10.18653/v1/P19-1092\",\n pages = \"960--966\",\n abstract = \"We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.\",\n}\n", "homepage": "https://aghie.github.io/head-qa/", "license": "MIT License", "features": {"name": {"dtype": "string", "id": null, "_type": "Value"}, "year": {"dtype": "string", "id": null, "_type": "Value"}, "category": {"dtype": "string", "id": null, "_type": "Value"}, "qid": {"dtype": "int32", "id": null, "_type": "Value"}, "qtext": {"dtype": "string", "id": null, "_type": "Value"}, "ra": {"dtype": "int32", "id": null, "_type": "Value"}, "image": {"dtype": "string", "id": null, "_type": "Value"}, "answers": [{"aid": {"dtype": "int32", "id": null, "_type": "Value"}, "atext": {"dtype": "string", "id": null, "_type": "Value"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "head_qa", "config_name": "es", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1207986, "num_examples": 2657, "dataset_name": "head_qa"}, "test": {"name": "test", "num_bytes": 1182358, "num_examples": 2742, "dataset_name": "head_qa"}, "validation": {"name": "validation", "num_bytes": 563002, "num_examples": 1366, "dataset_name": "head_qa"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1dUIqVwvoZAtbX_-z5axCoe97XNcFo1No": {"num_bytes": 1856679, "checksum": "6bb1cf3bbf8eccab2c5be33c2eb63896f1bd8c14c7a305a9449b254be3d0bfc5"}}, "download_size": 1856679, "post_processing_size": null, "dataset_size": 2953346, "size_in_bytes": 4810025}, "en": {"description": "HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the\nSpanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio\nde Sanidad, Consumo y Bienestar Social.\n\nThe dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology.\n", "citation": "@inproceedings{vilares-gomez-rodriguez-2019-head,\n title = \"{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning\",\n author = \"Vilares, David and\n G{'o}mez-Rodr{'i}guez, Carlos\",\n booktitle = \"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2019\",\n address = \"Florence, Italy\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P19-1092\",\n doi = \"10.18653/v1/P19-1092\",\n pages = \"960--966\",\n abstract = \"We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.\",\n}\n", "homepage": "https://aghie.github.io/head-qa/", "license": "MIT License", "features": {"name": {"dtype": "string", "id": null, "_type": "Value"}, "year": {"dtype": "string", "id": null, "_type": "Value"}, "category": {"dtype": "string", "id": null, "_type": "Value"}, "qid": {"dtype": "int32", "id": null, "_type": "Value"}, "qtext": {"dtype": "string", "id": null, "_type": "Value"}, "ra": {"dtype": "int32", "id": null, "_type": "Value"}, "image": {"dtype": "string", "id": null, "_type": "Value"}, "answers": [{"aid": {"dtype": "int32", "id": null, "_type": "Value"}, "atext": {"dtype": "string", "id": null, "_type": "Value"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "head_qa", "config_name": "en", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1135116, "num_examples": 2657, "dataset_name": "head_qa"}, "test": {"name": "test", "num_bytes": 1109888, "num_examples": 2742, "dataset_name": "head_qa"}, "validation": {"name": "validation", "num_bytes": 529540, "num_examples": 1366, "dataset_name": "head_qa"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1phryJg4FjCFkn0mSCqIOP2-FscAeKGV0": {"num_bytes": 1749836, "checksum": "21ca4e48930a3afe63d50d722b6b335ecb636e283489713ac3e8706db20ed92e"}}, "download_size": 1749836, "post_processing_size": null, "dataset_size": 2774544, "size_in_bytes": 4524380}}
|
dummy/en/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4444c7ec54df2feb8264c0e3e0fd4423ff6a834e8557e261ae5845ff9df8ca6
|
3 |
+
size 2533
|
dummy/es/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e32d340330882f3487b3ff718464864cbefe9e987781976e6d502dadca039bc0
|
3 |
+
size 2533
|
head_qa.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{vilares-gomez-rodriguez-2019-head,
|
27 |
+
title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning",
|
28 |
+
author = "Vilares, David and
|
29 |
+
G{\'o}mez-Rodr{\'i}guez, Carlos",
|
30 |
+
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
|
31 |
+
month = jul,
|
32 |
+
year = "2019",
|
33 |
+
address = "Florence, Italy",
|
34 |
+
publisher = "Association for Computational Linguistics",
|
35 |
+
url = "https://www.aclweb.org/anthology/P19-1092",
|
36 |
+
doi = "10.18653/v1/P19-1092",
|
37 |
+
pages = "960--966",
|
38 |
+
abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.",
|
39 |
+
}
|
40 |
+
"""
|
41 |
+
|
42 |
+
_DESCRIPTION = """\
|
43 |
+
HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the
|
44 |
+
Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio
|
45 |
+
de Sanidad, Consumo y Bienestar Social.
|
46 |
+
|
47 |
+
The dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology.
|
48 |
+
"""
|
49 |
+
|
50 |
+
_HOMEPAGE = "https://aghie.github.io/head-qa/"
|
51 |
+
|
52 |
+
_LICENSE = "MIT License"
|
53 |
+
|
54 |
+
_URLs = {
|
55 |
+
"es": "https://drive.google.com/uc?export=download&id=1dUIqVwvoZAtbX_-z5axCoe97XNcFo1No",
|
56 |
+
"en": "https://drive.google.com/uc?export=download&id=1phryJg4FjCFkn0mSCqIOP2-FscAeKGV0",
|
57 |
+
}
|
58 |
+
|
59 |
+
_DIRS = {"es": "HEAD", "en": "HEAD_EN"}
|
60 |
+
|
61 |
+
|
62 |
+
class HeadQA(datasets.GeneratorBasedBuilder):
|
63 |
+
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning"""
|
64 |
+
|
65 |
+
VERSION = datasets.Version("1.1.0")
|
66 |
+
|
67 |
+
BUILDER_CONFIGS = [
|
68 |
+
datasets.BuilderConfig(name="es", version=VERSION, description="Spanish HEAD dataset"),
|
69 |
+
datasets.BuilderConfig(name="en", version=VERSION, description="English HEAD dataset"),
|
70 |
+
]
|
71 |
+
|
72 |
+
DEFAULT_CONFIG_NAME = "es"
|
73 |
+
|
74 |
+
def _info(self):
|
75 |
+
return datasets.DatasetInfo(
|
76 |
+
description=_DESCRIPTION,
|
77 |
+
features=datasets.Features(
|
78 |
+
{
|
79 |
+
"name": datasets.Value("string"),
|
80 |
+
"year": datasets.Value("string"),
|
81 |
+
"category": datasets.Value("string"),
|
82 |
+
"qid": datasets.Value("int32"),
|
83 |
+
"qtext": datasets.Value("string"),
|
84 |
+
"ra": datasets.Value("int32"),
|
85 |
+
"image": datasets.Value("string"),
|
86 |
+
"answers": [
|
87 |
+
{
|
88 |
+
"aid": datasets.Value("int32"),
|
89 |
+
"atext": datasets.Value("string"),
|
90 |
+
}
|
91 |
+
],
|
92 |
+
}
|
93 |
+
),
|
94 |
+
supervised_keys=None,
|
95 |
+
homepage=_HOMEPAGE,
|
96 |
+
license=_LICENSE,
|
97 |
+
citation=_CITATION,
|
98 |
+
)
|
99 |
+
|
100 |
+
def _split_generators(self, dl_manager):
|
101 |
+
"""Returns SplitGenerators."""
|
102 |
+
data_dir = dl_manager.download_and_extract(_URLs[self.config.name])
|
103 |
+
|
104 |
+
dir = _DIRS[self.config.name]
|
105 |
+
data_dir = os.path.join(data_dir, dir)
|
106 |
+
|
107 |
+
return [
|
108 |
+
datasets.SplitGenerator(
|
109 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "train_{}.json".format(dir))}
|
110 |
+
),
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test_{}.json".format(dir))}
|
113 |
+
),
|
114 |
+
datasets.SplitGenerator(
|
115 |
+
name=datasets.Split.VALIDATION,
|
116 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "dev_{}.json".format(dir))},
|
117 |
+
),
|
118 |
+
]
|
119 |
+
|
120 |
+
def _generate_examples(self, filepath):
|
121 |
+
""" Yields examples. """
|
122 |
+
with open(filepath, encoding="utf-8") as f:
|
123 |
+
head_qa = json.load(f)
|
124 |
+
for exam in head_qa["exams"]:
|
125 |
+
content = head_qa["exams"][exam]
|
126 |
+
name = content["name"].strip()
|
127 |
+
year = content["year"].strip()
|
128 |
+
category = content["category"].strip()
|
129 |
+
for question in content["data"]:
|
130 |
+
id_ = int(question["qid"].strip())
|
131 |
+
qtext = question["qtext"].strip()
|
132 |
+
ra = int(question["ra"].strip())
|
133 |
+
image = question["image"].strip()
|
134 |
+
|
135 |
+
aids = [answer["aid"] for answer in question["answers"]]
|
136 |
+
atexts = [answer["atext"].strip() for answer in question["answers"]]
|
137 |
+
answers = [{"aid": aid, "atext": atext} for aid, atext in zip(aids, atexts)]
|
138 |
+
|
139 |
+
yield id_, {
|
140 |
+
"name": name,
|
141 |
+
"year": year,
|
142 |
+
"category": category,
|
143 |
+
"qid": id_,
|
144 |
+
"qtext": qtext,
|
145 |
+
"ra": ra,
|
146 |
+
"image": image,
|
147 |
+
"answers": answers,
|
148 |
+
}
|