frankaging
commited on
Commit
·
8910c0a
1
Parent(s):
9f36bd8
dynasent-v1.1-round1
Browse files- dataset_infos.json +1 -0
- dynasent.py +123 -92
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dynabench.dynasent.r1.all": {"description": "DynaSent is an English-language benchmark task for ternary\n (positive/negative/neutral) sentiment analysis.\n For more details on the dataset construction process,\n see https://github.com/cgpotts/dynasent.", "citation": "@article{\n potts-etal-2020-dynasent,\n title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis},\n author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus\n and Kiela, Douwe},\n journal={arXiv preprint arXiv:2012.15349},\n url={https://arxiv.org/abs/2012.15349},\n year={2020}\n }", "homepage": "https://dynabench.org/tasks/3", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "hit_ids": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "indices_into_review_text": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "model_0_label": {"dtype": "string", "id": null, "_type": "Value"}, "model_0_probs": {"negative": {"dtype": "float32", "id": null, "_type": "Value"}, "positive": {"dtype": "float32", "id": null, "_type": "Value"}, "neutral": {"dtype": "float32", "id": null, "_type": "Value"}}, "text_id": {"dtype": "string", "id": null, "_type": "Value"}, "review_id": {"dtype": "string", "id": null, "_type": "Value"}, "review_rating": {"dtype": "int32", "id": null, "_type": "Value"}, "label_distribution": {"positive": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "negative": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "neutral": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "mixed": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "gold_label": {"dtype": "string", "id": null, "_type": "Value"}, "metadata": {"split": {"dtype": "string", "id": null, "_type": "Value"}, "round": {"dtype": "int32", "id": null, "_type": "Value"}, "subset": {"dtype": "string", "id": null, "_type": "Value"}, "model_in_the_loop": {"dtype": "string", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "builder_name": "dynabench_dyna_sent", "config_name": "dynabench.dynasent.r1.all", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23007540, "num_examples": 80488, "dataset_name": "dynabench_dyna_sent"}, "validation": {"name": "validation", "num_bytes": 1057327, "num_examples": 3600, "dataset_name": "dynabench_dyna_sent"}, "test": {"name": "test", "num_bytes": 1035527, "num_examples": 3600, "dataset_name": "dynabench_dyna_sent"}}, "download_checksums": {"https://github.com/cgpotts/dynasent/raw/main/dynasent-v1.1.zip": {"num_bytes": 17051772, "checksum": "33001cf394618aa38f9530c43ca87072b92f5ee609a02afa2d168d25560cedfd"}}, "download_size": 17051772, "post_processing_size": null, "dataset_size": 25100394, "size_in_bytes": 42152166}}
|
dynasent.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -13,21 +13,29 @@
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
# Lint as: python3
|
16 |
-
|
|
|
|
|
17 |
from __future__ import absolute_import, division, print_function
|
18 |
import json
|
19 |
import os
|
20 |
from collections import OrderedDict
|
21 |
import datasets
|
22 |
logger = datasets.logging.get_logger(__name__)
|
23 |
-
_VERSION = datasets.Version("1.
|
24 |
_NUM_ROUNDS = 1
|
25 |
_DESCRIPTION = """\
|
26 |
-
Dynabench.
|
|
|
27 |
""".strip()
|
|
|
|
|
28 |
class DynabenchRoundDetails:
|
29 |
-
"""Round details for
|
30 |
-
def __init__(
|
|
|
|
|
|
|
31 |
self.citation = citation
|
32 |
self.description = description
|
33 |
self.homepage = homepage
|
@@ -39,73 +47,82 @@ class DynabenchRoundDetails:
|
|
39 |
_ROUND_DETAILS = {
|
40 |
1: DynabenchRoundDetails(
|
41 |
citation="""\
|
42 |
-
@article{
|
43 |
-
|
44 |
-
title
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
year
|
50 |
-
doi = {10.1162/tacl_a_00338},
|
51 |
-
URL = { https://doi.org/10.1162/tacl_a_00338 },
|
52 |
-
eprint = { https://doi.org/10.1162/tacl_a_00338 },
|
53 |
-
abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD—only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }
|
54 |
}
|
55 |
""".strip(),
|
56 |
description="""\
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
""".strip(),
|
62 |
-
homepage="https://dynabench.org/tasks/
|
63 |
-
data_license="CC BY
|
64 |
-
data_url="https://
|
65 |
data_features=datasets.Features(
|
66 |
{
|
67 |
"id": datasets.Value("string"),
|
68 |
-
"
|
69 |
-
|
70 |
-
"question": datasets.Value("string"),
|
71 |
-
"answers": datasets.features.Sequence(
|
72 |
-
{
|
73 |
-
"text": datasets.Value("string"),
|
74 |
-
"answer_start": datasets.Value("int32"),
|
75 |
-
}
|
76 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
"metadata": {
|
78 |
"split": datasets.Value("string"),
|
79 |
"round": datasets.Value("int32"),
|
80 |
"subset": datasets.Value("string"),
|
81 |
"model_in_the_loop": datasets.Value("string"),
|
82 |
-
}
|
83 |
}
|
84 |
),
|
85 |
data_subset_map=OrderedDict({
|
86 |
"all": {
|
87 |
-
"dir": "
|
88 |
-
"
|
89 |
-
|
90 |
-
|
91 |
-
"dir": "1_dbidaf",
|
92 |
-
"model": "BiDAF",
|
93 |
-
},
|
94 |
-
"dbert": {
|
95 |
-
"dir": "2_dbert",
|
96 |
-
"model": "BERT-Large",
|
97 |
-
},
|
98 |
-
"droberta": {
|
99 |
-
"dir": "3_droberta",
|
100 |
-
"model": "RoBERTa-Large",
|
101 |
-
},
|
102 |
}),
|
103 |
)
|
104 |
}
|
105 |
-
|
106 |
-
|
|
|
|
|
107 |
def __init__(self, round, subset='all', **kwargs):
|
108 |
-
"""BuilderConfig for
|
109 |
Args:
|
110 |
round: integer, the dynabench round to load.
|
111 |
subset: string, the subset of that round's data to load or 'all'.
|
@@ -114,24 +131,27 @@ class DynabenchQAConfig(datasets.BuilderConfig):
|
|
114 |
assert isinstance(round, int), "round ({}) must be set and of type integer".format(round)
|
115 |
assert 0 < round <= _NUM_ROUNDS, \
|
116 |
"round (received {}) must be between 1 and {}".format(round, _NUM_ROUNDS)
|
117 |
-
super(
|
118 |
-
name="dynabench.
|
119 |
-
description="Dynabench
|
120 |
**kwargs,
|
121 |
)
|
122 |
self.round = round
|
123 |
self.subset = subset
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
127 |
BUILDER_CONFIGS = [
|
128 |
-
|
129 |
version=_VERSION,
|
130 |
round=round,
|
131 |
subset=subset,
|
132 |
) # pylint:disable=g-complex-comprehension
|
133 |
for round in range(1, _NUM_ROUNDS+1) for subset in _ROUND_DETAILS[round].data_subset_map
|
134 |
]
|
|
|
135 |
def _info(self):
|
136 |
round_details = _ROUND_DETAILS[self.config.round]
|
137 |
return datasets.DatasetInfo(
|
@@ -139,12 +159,18 @@ class DynabenchQA(datasets.GeneratorBasedBuilder):
|
|
139 |
features=round_details.data_features,
|
140 |
homepage=round_details.homepage,
|
141 |
citation=round_details.citation,
|
142 |
-
supervised_keys=None
|
143 |
)
|
|
|
144 |
@staticmethod
|
145 |
def _get_filepath(dl_dir, round, subset, split):
|
146 |
round_details = _ROUND_DETAILS[round]
|
147 |
-
return os.path.join(
|
|
|
|
|
|
|
|
|
|
|
148 |
def _split_generators(self, dl_manager):
|
149 |
round_details = _ROUND_DETAILS[self.config.round]
|
150 |
dl_dir = dl_manager.download_and_extract(round_details.data_url)
|
@@ -152,7 +178,9 @@ class DynabenchQA(datasets.GeneratorBasedBuilder):
|
|
152 |
datasets.SplitGenerator(
|
153 |
name=datasets.Split.TRAIN,
|
154 |
gen_kwargs={
|
155 |
-
"filepath": self._get_filepath(
|
|
|
|
|
156 |
"split": "train",
|
157 |
"round": self.config.round,
|
158 |
"subset": self.config.subset,
|
@@ -162,7 +190,9 @@ class DynabenchQA(datasets.GeneratorBasedBuilder):
|
|
162 |
datasets.SplitGenerator(
|
163 |
name=datasets.Split.VALIDATION,
|
164 |
gen_kwargs={
|
165 |
-
"filepath": self._get_filepath(
|
|
|
|
|
166 |
"split": "validation",
|
167 |
"round": self.config.round,
|
168 |
"subset": self.config.subset,
|
@@ -172,7 +202,9 @@ class DynabenchQA(datasets.GeneratorBasedBuilder):
|
|
172 |
datasets.SplitGenerator(
|
173 |
name=datasets.Split.TEST,
|
174 |
gen_kwargs={
|
175 |
-
"filepath": self._get_filepath(
|
|
|
|
|
176 |
"split": "test",
|
177 |
"round": self.config.round,
|
178 |
"subset": self.config.subset,
|
@@ -180,35 +212,34 @@ class DynabenchQA(datasets.GeneratorBasedBuilder):
|
|
180 |
},
|
181 |
),
|
182 |
]
|
|
|
183 |
def _generate_examples(self, filepath, split, round, subset, model_in_the_loop):
|
184 |
"""This function returns the examples in the raw (text) form."""
|
|
|
185 |
logger.info("generating examples from = %s", filepath)
|
186 |
with open(filepath, encoding="utf-8") as f:
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
"
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
"model_in_the_loop": model_in_the_loop
|
213 |
-
},
|
214 |
-
}
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
# Lint as: python3
|
16 |
+
|
17 |
+
|
18 |
+
"""Dynabench.DynaSent"""
|
19 |
from __future__ import absolute_import, division, print_function
|
20 |
import json
|
21 |
import os
|
22 |
from collections import OrderedDict
|
23 |
import datasets
|
24 |
logger = datasets.logging.get_logger(__name__)
|
25 |
+
_VERSION = datasets.Version("1.1.0") # v1.1 fixed for example uid.
|
26 |
_NUM_ROUNDS = 1
|
27 |
_DESCRIPTION = """\
|
28 |
+
Dynabench.DynaSent is a Sentiment Analysis dataset collected using a
|
29 |
+
human-and-model-in-the-loop.
|
30 |
""".strip()
|
31 |
+
|
32 |
+
|
33 |
class DynabenchRoundDetails:
|
34 |
+
"""Round details for Dynabench.DynaSent datasets."""
|
35 |
+
def __init__(
|
36 |
+
self, citation, description, homepage, data_license, data_url,
|
37 |
+
data_features, data_subset_map=None
|
38 |
+
):
|
39 |
self.citation = citation
|
40 |
self.description = description
|
41 |
self.homepage = homepage
|
|
|
47 |
_ROUND_DETAILS = {
|
48 |
1: DynabenchRoundDetails(
|
49 |
citation="""\
|
50 |
+
@article{
|
51 |
+
potts-etal-2020-dynasent,
|
52 |
+
title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis},
|
53 |
+
author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus
|
54 |
+
and Kiela, Douwe},
|
55 |
+
journal={arXiv preprint arXiv:2012.15349},
|
56 |
+
url={https://arxiv.org/abs/2012.15349},
|
57 |
+
year={2020}
|
|
|
|
|
|
|
|
|
58 |
}
|
59 |
""".strip(),
|
60 |
description="""\
|
61 |
+
DynaSent is an English-language benchmark task for ternary
|
62 |
+
(positive/negative/neutral) sentiment analysis.
|
63 |
+
For more details on the dataset construction process,
|
64 |
+
see https://github.com/cgpotts/dynasent.
|
65 |
""".strip(),
|
66 |
+
homepage="https://dynabench.org/tasks/3",
|
67 |
+
data_license="CC BY 4.0",
|
68 |
+
data_url="https://github.com/cgpotts/dynasent/raw/main/dynasent-v1.1.zip",
|
69 |
data_features=datasets.Features(
|
70 |
{
|
71 |
"id": datasets.Value("string"),
|
72 |
+
"hit_ids": datasets.features.Sequence(
|
73 |
+
datasets.Value("string")
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
),
|
75 |
+
"sentence": datasets.Value("string"),
|
76 |
+
"indices_into_review_text": datasets.features.Sequence(
|
77 |
+
datasets.Value("int32")
|
78 |
+
),
|
79 |
+
"model_0_label": datasets.Value("string"),
|
80 |
+
"model_0_probs": {
|
81 |
+
"negative": datasets.Value("float32"),
|
82 |
+
"positive": datasets.Value("float32"),
|
83 |
+
"neutral": datasets.Value("float32")
|
84 |
+
},
|
85 |
+
"text_id": datasets.Value("string"),
|
86 |
+
"review_id": datasets.Value("string"),
|
87 |
+
"review_rating": datasets.Value("int32"),
|
88 |
+
"label_distribution": {
|
89 |
+
"positive": datasets.features.Sequence(
|
90 |
+
datasets.Value("string")
|
91 |
+
),
|
92 |
+
"negative": datasets.features.Sequence(
|
93 |
+
datasets.Value("string")
|
94 |
+
),
|
95 |
+
"neutral": datasets.features.Sequence(
|
96 |
+
datasets.Value("string")
|
97 |
+
),
|
98 |
+
"mixed": datasets.features.Sequence(
|
99 |
+
datasets.Value("string")
|
100 |
+
)
|
101 |
+
},
|
102 |
+
"gold_label": datasets.Value("string"),
|
103 |
"metadata": {
|
104 |
"split": datasets.Value("string"),
|
105 |
"round": datasets.Value("int32"),
|
106 |
"subset": datasets.Value("string"),
|
107 |
"model_in_the_loop": datasets.Value("string"),
|
108 |
+
}
|
109 |
}
|
110 |
),
|
111 |
data_subset_map=OrderedDict({
|
112 |
"all": {
|
113 |
+
"dir": "dynasent-v1.1",
|
114 |
+
"file_prefix": "dynasent-v1.1-round01-yelp-",
|
115 |
+
"model": "RoBERTa"
|
116 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
}),
|
118 |
)
|
119 |
}
|
120 |
+
|
121 |
+
|
122 |
+
class DynabenchDynaSentConfig(datasets.BuilderConfig):
|
123 |
+
"""BuilderConfig for Dynabench.DynaSent datasets."""
|
124 |
def __init__(self, round, subset='all', **kwargs):
|
125 |
+
"""BuilderConfig for Dynabench.DynaSent.
|
126 |
Args:
|
127 |
round: integer, the dynabench round to load.
|
128 |
subset: string, the subset of that round's data to load or 'all'.
|
|
|
131 |
assert isinstance(round, int), "round ({}) must be set and of type integer".format(round)
|
132 |
assert 0 < round <= _NUM_ROUNDS, \
|
133 |
"round (received {}) must be between 1 and {}".format(round, _NUM_ROUNDS)
|
134 |
+
super(DynabenchDynaSentConfig, self).__init__(
|
135 |
+
name="dynabench.dynasent.r{}.{}".format(round, subset),
|
136 |
+
description="Dynabench DynaSent dataset for round {}, showing dataset selection: {}.".format(round, subset),
|
137 |
**kwargs,
|
138 |
)
|
139 |
self.round = round
|
140 |
self.subset = subset
|
141 |
+
|
142 |
+
|
143 |
+
class DynabenchDynaSent(datasets.GeneratorBasedBuilder):
|
144 |
+
"""Dynabench.DynaSent"""
|
145 |
+
BUILDER_CONFIG_CLASS = DynabenchDynaSentConfig
|
146 |
BUILDER_CONFIGS = [
|
147 |
+
DynabenchDynaSentConfig(
|
148 |
version=_VERSION,
|
149 |
round=round,
|
150 |
subset=subset,
|
151 |
) # pylint:disable=g-complex-comprehension
|
152 |
for round in range(1, _NUM_ROUNDS+1) for subset in _ROUND_DETAILS[round].data_subset_map
|
153 |
]
|
154 |
+
|
155 |
def _info(self):
|
156 |
round_details = _ROUND_DETAILS[self.config.round]
|
157 |
return datasets.DatasetInfo(
|
|
|
159 |
features=round_details.data_features,
|
160 |
homepage=round_details.homepage,
|
161 |
citation=round_details.citation,
|
162 |
+
supervised_keys=None
|
163 |
)
|
164 |
+
|
165 |
@staticmethod
|
166 |
def _get_filepath(dl_dir, round, subset, split):
|
167 |
round_details = _ROUND_DETAILS[round]
|
168 |
+
return os.path.join(
|
169 |
+
dl_dir,
|
170 |
+
round_details.data_subset_map[subset]["dir"],
|
171 |
+
round_details.data_subset_map[subset]["file_prefix"] + split + ".jsonl"
|
172 |
+
)
|
173 |
+
|
174 |
def _split_generators(self, dl_manager):
|
175 |
round_details = _ROUND_DETAILS[self.config.round]
|
176 |
dl_dir = dl_manager.download_and_extract(round_details.data_url)
|
|
|
178 |
datasets.SplitGenerator(
|
179 |
name=datasets.Split.TRAIN,
|
180 |
gen_kwargs={
|
181 |
+
"filepath": self._get_filepath(
|
182 |
+
dl_dir, self.config.round, self.config.subset, "train"
|
183 |
+
),
|
184 |
"split": "train",
|
185 |
"round": self.config.round,
|
186 |
"subset": self.config.subset,
|
|
|
190 |
datasets.SplitGenerator(
|
191 |
name=datasets.Split.VALIDATION,
|
192 |
gen_kwargs={
|
193 |
+
"filepath": self._get_filepath(
|
194 |
+
dl_dir, self.config.round, self.config.subset, "dev"
|
195 |
+
),
|
196 |
"split": "validation",
|
197 |
"round": self.config.round,
|
198 |
"subset": self.config.subset,
|
|
|
202 |
datasets.SplitGenerator(
|
203 |
name=datasets.Split.TEST,
|
204 |
gen_kwargs={
|
205 |
+
"filepath": self._get_filepath(
|
206 |
+
dl_dir, self.config.round, self.config.subset, "test"
|
207 |
+
),
|
208 |
"split": "test",
|
209 |
"round": self.config.round,
|
210 |
"subset": self.config.subset,
|
|
|
212 |
},
|
213 |
),
|
214 |
]
|
215 |
+
|
216 |
def _generate_examples(self, filepath, split, round, subset, model_in_the_loop):
|
217 |
"""This function returns the examples in the raw (text) form."""
|
218 |
+
ternary_labels = ('positive', 'negative', 'neutral') # Enforce to be the tenary version now.
|
219 |
logger.info("generating examples from = %s", filepath)
|
220 |
with open(filepath, encoding="utf-8") as f:
|
221 |
+
for line in f:
|
222 |
+
d = json.loads(line)
|
223 |
+
if d['gold_label'] in ternary_labels:
|
224 |
+
# Construct DynaSent features.
|
225 |
+
yield d["text_id"], {
|
226 |
+
"id": d["text_id"],
|
227 |
+
# DynaSent Example.
|
228 |
+
"hit_ids": d["hit_ids"],
|
229 |
+
"sentence": d["sentence"],
|
230 |
+
"indices_into_review_text": d["indices_into_review_text"],
|
231 |
+
"model_0_label": d["model_0_label"],
|
232 |
+
"model_0_probs": d["model_0_probs"],
|
233 |
+
"text_id": d["text_id"],
|
234 |
+
"review_id": d["review_id"],
|
235 |
+
"review_rating": d["review_rating"],
|
236 |
+
"label_distribution": d["label_distribution"],
|
237 |
+
"gold_label": d["gold_label"],
|
238 |
+
# Metadata.
|
239 |
+
"metadata": {
|
240 |
+
"split": split,
|
241 |
+
"round": round,
|
242 |
+
"subset": subset,
|
243 |
+
"model_in_the_loop": model_in_the_loop
|
244 |
+
},
|
245 |
+
}
|
|
|
|
|
|