File size: 3,932 Bytes
05f17ec 831cb7c 05f17ec 4404585 05f17ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Lint as: python3
"""Description and Questions Dataset"""
import json
import datasets
from datasets.tasks import QuestionAnsweringExtractive
import pandas as pd
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{2016arXiv160605250R,
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
Konstantin and {Liang}, Percy},
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
journal = {arXiv e-prints},
year = 2016,
eid = {arXiv:1606.05250},
pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
eprint = {1606.05250},
}
"""
_DESCRIPTION = """\
Image descriptions for data science charts
"""
_URL = "https://huggingface.co/datasets/eduvedras/Desc_Questions/resolve/main/images.tar.gz"
class Desc_QuestionsTargz(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"Chart": datasets.Image(),
"Description": datasets.Value("string"),
"Chart_name": datasets.Value("string"),
"Questions": datasets.Value("string"),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://huggingface.co/datasets/eduvedras/Desc_Questions",
citation=_CITATION,
task_templates=[
QuestionAnsweringExtractive(
question_column="question", context_column="context", answers_column="answers"
)
],
)
def _split_generators(self, dl_manager):
path = dl_manager.download(_URL)
image_iters = dl_manager.iter_archive(path)
metadata_train_path = "https://huggingface.co/datasets/eduvedras/Desc_Questions/resolve/main/desc_questions_dataset_train1.csv"
metadata_test_path = "https://huggingface.co/datasets/eduvedras/Desc_Questions/resolve/main/desc_questions_dataset_test1.csv"
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"images": image_iters,
"metadata_path": metadata_train_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"images": image_iters,
"metadata_path": metadata_test_path}),
]
def _generate_examples(self, images, metadata_path):
metadata = pd.read_csv(metadata_path, sep=';')
idx = 0
for index, row in metadata.iterrows():
for filepath, image in images:
filepath = filepath.split('/')[-1]
if row['Chart'] in filepath:
yield idx, {
"Chart": {"path": filepath, "bytes": image.read()},
"Description": row['description'],
"Chart_name": row['Chart'],
"Questions": row['Questions'],
}
break
idx += 1 |