|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Description and Questions Dataset""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
import pandas as pd |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{2016arXiv160605250R, |
|
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, |
|
Konstantin and {Liang}, Percy}, |
|
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", |
|
journal = {arXiv e-prints}, |
|
year = 2016, |
|
eid = {arXiv:1606.05250}, |
|
pages = {arXiv:1606.05250}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1606.05250}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Image descriptions for data science charts |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/eduvedras/Desc_Questions/resolve/main/images.tar.gz" |
|
|
|
class Desc_QuestionsTargz(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"Chart": datasets.Image(), |
|
"Description": datasets.Value("string"), |
|
"Chart_name": datasets.Value("string"), |
|
"Questions": datasets.Value("string"), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://huggingface.co/datasets/eduvedras/Desc_Questions", |
|
citation=_CITATION, |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", context_column="context", answers_column="answers" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
path = dl_manager.download(_URL) |
|
image_iters = dl_manager.iter_archive(path) |
|
metadata_train_path = "https://huggingface.co/datasets/eduvedras/Desc_Questions/resolve/main/desc_questions_dataset_train.csv" |
|
metadata_test_path = "https://huggingface.co/datasets/eduvedras/Desc_Questions/resolve/main/desc_questions_dataset_test.csv" |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"images": image_iters, |
|
"metadata_path": metadata_train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"images": image_iters, |
|
"metadata_path": metadata_test_path}), |
|
] |
|
|
|
def _generate_examples(self, images, metadata_path): |
|
metadata = pd.read_csv(metadata_path, sep=';') |
|
idx = 0 |
|
for index, row in metadata.iterrows(): |
|
for filepath, image in images: |
|
filepath = filepath.split('/')[-1] |
|
if row['Chart'] in filepath: |
|
yield idx, { |
|
"Chart": {"path": filepath, "bytes": image.read()}, |
|
"Description": row['description'], |
|
"Chart_name": row['Chart'], |
|
"Questions": row['Questions'], |
|
} |
|
break |
|
idx += 1 |