File size: 5,300 Bytes
57309de
 
 
 
 
a462235
 
57309de
 
 
 
 
 
 
 
 
fb0d8a4
 
 
 
57309de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
annotations_creators:
- machine-generated
language_creators:
- found
language: []
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- unknown
source_datasets:
- original
task_categories:
- other
task_ids: []
pretty_name: Urban100
tags:
- other-image-super-resolution
---

# Dataset Card for Urban100

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage**: https://github.com/jbhuang0604/SelfExSR
- **Repository**: https://huggingface.co/datasets/eugenesiow/Urban100
- **Paper**: https://openaccess.thecvf.com/content_cvpr_2015/html/Huang_Single_Image_Super-Resolution_2015_CVPR_paper.html
- **Leaderboard**: https://github.com/eugenesiow/super-image#scale-x2

### Dataset Summary

The Urban100 dataset contains 100 images of urban scenes. It commonly used as a test set to evaluate the performance of super-resolution models. It was first published by [Huang et al. (2015)](https://openaccess.thecvf.com/content_cvpr_2015/html/Huang_Single_Image_Super-Resolution_2015_CVPR_paper.html) in the paper "Single Image Super-Resolution From Transformed Self-Exemplars".

Install with `pip`:
```bash
pip install datasets super-image
```

Evaluate a model with the [`super-image`](https://github.com/eugenesiow/super-image) library:
```python
from datasets import load_dataset
from super_image import EdsrModel
from super_image.data import EvalDataset, EvalMetrics

dataset = load_dataset('eugenesiow/Urban100', 'bicubic_x2', split='validation')
eval_dataset = EvalDataset(dataset)
model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2)
EvalMetrics().evaluate(model, eval_dataset)
```

### Supported Tasks and Leaderboards

The dataset is commonly used for evaluation of the `image-super-resolution` task.

Unofficial [`super-image`](https://github.com/eugenesiow/super-image) leaderboard for:
- [Scale 2](https://github.com/eugenesiow/super-image#scale-x2)
- [Scale 3](https://github.com/eugenesiow/super-image#scale-x3)
- [Scale 4](https://github.com/eugenesiow/super-image#scale-x4)
- [Scale 8](https://github.com/eugenesiow/super-image#scale-x8)

### Languages

Not applicable.

## Dataset Structure

### Data Instances

An example of `validation` for `bicubic_x2` looks as follows.
```
{
    "hr": "/.cache/huggingface/datasets/downloads/extracted/Urban100_HR/img_001.png",
    "lr": "/.cache/huggingface/datasets/downloads/extracted/Urban100_LR_x2/img_001.png"
}
```

### Data Fields

The data fields are the same among all splits.

- `hr`: a `string` to the path of the High Resolution (HR) `.png` image.
- `lr`: a `string` to the path of the Low Resolution (LR) `.png` image.

### Data Splits

| name  |validation|
|-------|---:|
|bicubic_x2|100|
|bicubic_x3|100|
|bicubic_x4|100|


## Dataset Creation

### Curation Rationale

The authors have created Urban100 containing 100 HR images with a variety of real-world structures.

### Source Data

#### Initial Data Collection and Normalization

The authors constructed this dataset using images from Flickr (under CC license) using keywords such as urban, city, architecture, and structure.

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

No annotations.

#### Who are the annotators?

No annotators.

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

- **Original Authors**: [Huang et al. (2015)](https://github.com/jbhuang0604/SelfExSR) 

### Licensing Information

The dataset provided uses images from Flikr under the CC (CC-BY-4.0) license.

### Citation Information

```bibtex
@InProceedings{Huang_2015_CVPR,
  author = {Huang, Jia-Bin and Singh, Abhishek and Ahuja, Narendra},
  title = {Single Image Super-Resolution From Transformed Self-Exemplars},
  booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2015}
}
```

### Contributions

Thanks to [@eugenesiow](https://github.com/eugenesiow) for adding this dataset.