{ | |
"plain_text": { | |
"description": "The Adversarial Natural Language Inference (ANLI) is a new large-scale NLI benchmark dataset,\nThe dataset is collected via an iterative, adversarial human-and-model-in-the-loop procedure.\nANLI is much more difficult than its predecessors including SNLI and MNLI.\nIt contains three rounds. Each round has train/dev/test splits.\n", | |
"citation": "@InProceedings{nie2019adversarial,\n title={Adversarial NLI: A New Benchmark for Natural Language Understanding},\n author={Nie, Yixin\n and Williams, Adina\n and Dinan, Emily\n and Bansal, Mohit\n and Weston, Jason\n and Kiela, Douwe},\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n}\n", | |
"homepage": "https://github.com/facebookresearch/anli/", | |
"license": "", | |
"features": { | |
"uid": { | |
"dtype": "string", | |
"_type": "Value" | |
}, | |
"premise": { | |
"dtype": "string", | |
"_type": "Value" | |
}, | |
"hypothesis": { | |
"dtype": "string", | |
"_type": "Value" | |
}, | |
"label": { | |
"names": [ | |
"entailment", | |
"neutral", | |
"contradiction" | |
], | |
"_type": "ClassLabel" | |
}, | |
"reason": { | |
"dtype": "string", | |
"_type": "Value" | |
} | |
}, | |
"builder_name": "anli", | |
"dataset_name": "anli", | |
"config_name": "plain_text", | |
"version": { | |
"version_str": "0.1.0", | |
"description": "", | |
"major": 0, | |
"minor": 1, | |
"patch": 0 | |
}, | |
"splits": { | |
"train_r1": { | |
"name": "train_r1", | |
"num_bytes": 8006888, | |
"num_examples": 16946, | |
"dataset_name": null | |
}, | |
"dev_r1": { | |
"name": "dev_r1", | |
"num_bytes": 573428, | |
"num_examples": 1000, | |
"dataset_name": null | |
}, | |
"test_r1": { | |
"name": "test_r1", | |
"num_bytes": 574917, | |
"num_examples": 1000, | |
"dataset_name": null | |
}, | |
"train_r2": { | |
"name": "train_r2", | |
"num_bytes": 20801581, | |
"num_examples": 45460, | |
"dataset_name": null | |
}, | |
"dev_r2": { | |
"name": "dev_r2", | |
"num_bytes": 556066, | |
"num_examples": 1000, | |
"dataset_name": null | |
}, | |
"test_r2": { | |
"name": "test_r2", | |
"num_bytes": 572639, | |
"num_examples": 1000, | |
"dataset_name": null | |
}, | |
"train_r3": { | |
"name": "train_r3", | |
"num_bytes": 44720719, | |
"num_examples": 100459, | |
"dataset_name": null | |
}, | |
"dev_r3": { | |
"name": "dev_r3", | |
"num_bytes": 663148, | |
"num_examples": 1200, | |
"dataset_name": null | |
}, | |
"test_r3": { | |
"name": "test_r3", | |
"num_bytes": 657586, | |
"num_examples": 1200, | |
"dataset_name": null | |
} | |
}, | |
"download_size": 26286748, | |
"dataset_size": 77126972, | |
"size_in_bytes": 103413720 | |
} | |
} |