Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
6bcf0d7
·
1 Parent(s): ab48154

Delete loading script

Browse files
Files changed (1) hide show
  1. anli.py +0 -152
anli.py DELETED
@@ -1,152 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """The Adversarial NLI Corpus."""
18
-
19
-
20
- import json
21
- import os
22
-
23
- import datasets
24
-
25
-
26
- _CITATION = """\
27
- @InProceedings{nie2019adversarial,
28
- title={Adversarial NLI: A New Benchmark for Natural Language Understanding},
29
- author={Nie, Yixin
30
- and Williams, Adina
31
- and Dinan, Emily
32
- and Bansal, Mohit
33
- and Weston, Jason
34
- and Kiela, Douwe},
35
- booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
36
- year = "2020",
37
- publisher = "Association for Computational Linguistics",
38
- }
39
- """
40
-
41
- _DESCRIPTION = """\
42
- The Adversarial Natural Language Inference (ANLI) is a new large-scale NLI benchmark dataset,
43
- The dataset is collected via an iterative, adversarial human-and-model-in-the-loop procedure.
44
- ANLI is much more difficult than its predecessors including SNLI and MNLI.
45
- It contains three rounds. Each round has train/dev/test splits.
46
- """
47
-
48
- stdnli_label = {
49
- "e": "entailment",
50
- "n": "neutral",
51
- "c": "contradiction",
52
- }
53
-
54
-
55
- class ANLIConfig(datasets.BuilderConfig):
56
- """BuilderConfig for ANLI."""
57
-
58
- def __init__(self, **kwargs):
59
- """BuilderConfig for ANLI.
60
-
61
- Args:
62
- .
63
- **kwargs: keyword arguments forwarded to super.
64
- """
65
- super(ANLIConfig, self).__init__(version=datasets.Version("0.1.0", ""), **kwargs)
66
-
67
-
68
- class ANLI(datasets.GeneratorBasedBuilder):
69
- """ANLI: The ANLI Dataset."""
70
-
71
- BUILDER_CONFIGS = [
72
- ANLIConfig(
73
- name="plain_text",
74
- description="Plain text",
75
- ),
76
- ]
77
-
78
- def _info(self):
79
- return datasets.DatasetInfo(
80
- description=_DESCRIPTION,
81
- features=datasets.Features(
82
- {
83
- "uid": datasets.Value("string"),
84
- "premise": datasets.Value("string"),
85
- "hypothesis": datasets.Value("string"),
86
- "label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
87
- "reason": datasets.Value("string"),
88
- }
89
- ),
90
- # No default supervised_keys (as we have to pass both premise
91
- # and hypothesis as input).
92
- supervised_keys=None,
93
- homepage="https://github.com/facebookresearch/anli/",
94
- citation=_CITATION,
95
- )
96
-
97
- def _vocab_text_gen(self, filepath):
98
- for _, ex in self._generate_examples(filepath):
99
- yield " ".join([ex["premise"], ex["hypothesis"]])
100
-
101
- def _split_generators(self, dl_manager):
102
-
103
- downloaded_dir = dl_manager.download_and_extract("https://dl.fbaipublicfiles.com/anli/anli_v0.1.zip")
104
-
105
- anli_path = os.path.join(downloaded_dir, "anli_v0.1")
106
-
107
- path_dict = dict()
108
- for round_tag in ["R1", "R2", "R3"]:
109
- path_dict[round_tag] = dict()
110
- for split_name in ["train", "dev", "test"]:
111
- path_dict[round_tag][split_name] = os.path.join(anli_path, round_tag, f"{split_name}.jsonl")
112
-
113
- return [
114
- # Round 1
115
- datasets.SplitGenerator(name="train_r1", gen_kwargs={"filepath": path_dict["R1"]["train"]}),
116
- datasets.SplitGenerator(name="dev_r1", gen_kwargs={"filepath": path_dict["R1"]["dev"]}),
117
- datasets.SplitGenerator(name="test_r1", gen_kwargs={"filepath": path_dict["R1"]["test"]}),
118
- # Round 2
119
- datasets.SplitGenerator(name="train_r2", gen_kwargs={"filepath": path_dict["R2"]["train"]}),
120
- datasets.SplitGenerator(name="dev_r2", gen_kwargs={"filepath": path_dict["R2"]["dev"]}),
121
- datasets.SplitGenerator(name="test_r2", gen_kwargs={"filepath": path_dict["R2"]["test"]}),
122
- # Round 3
123
- datasets.SplitGenerator(name="train_r3", gen_kwargs={"filepath": path_dict["R3"]["train"]}),
124
- datasets.SplitGenerator(name="dev_r3", gen_kwargs={"filepath": path_dict["R3"]["dev"]}),
125
- datasets.SplitGenerator(name="test_r3", gen_kwargs={"filepath": path_dict["R3"]["test"]}),
126
- ]
127
-
128
- def _generate_examples(self, filepath):
129
- """Generate mnli examples.
130
-
131
- Args:
132
- filepath: a string
133
-
134
- Yields:
135
- dictionaries containing "premise", "hypothesis" and "label" strings
136
- """
137
- for idx, line in enumerate(open(filepath, "rb")):
138
- if line is not None:
139
- line = line.strip().decode("utf-8")
140
- item = json.loads(line)
141
-
142
- reason_text = ""
143
- if "reason" in item:
144
- reason_text = item["reason"]
145
-
146
- yield item["uid"], {
147
- "uid": item["uid"],
148
- "premise": item["context"],
149
- "hypothesis": item["hypothesis"],
150
- "label": stdnli_label[item["label"]],
151
- "reason": reason_text,
152
- }