File size: 12,512 Bytes
2aace14 3770864 2aace14 667c6d3 2aace14 667c6d3 e726c87 2aace14 667c6d3 2aace14 3770864 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
---
annotations_creators:
aidayago2:
- crowdsourced
- found
- machine-generated
cweb:
- crowdsourced
- found
- machine-generated
eli5:
- crowdsourced
- found
fever:
- crowdsourced
- found
- machine-generated
hotpotqa:
- crowdsourced
- found
- machine-generated
nq:
- crowdsourced
- found
- machine-generated
structured_zeroshot:
- crowdsourced
- found
- machine-generated
trex:
- crowdsourced
- found
- machine-generated
triviaqa_support_only:
- crowdsourced
- found
- machine-generated
wned:
- crowdsourced
- found
- machine-generated
wow:
- crowdsourced
- found
- machine-generated
language_creators:
aidayago2:
- crowdsourced
cweb:
- crowdsourced
eli5:
- found
fever:
- crowdsourced
hotpotqa:
- crowdsourced
- found
nq:
- found
structured_zeroshot:
- crowdsourced
trex:
- crowdsourced
triviaqa_support_only:
- found
wned:
- crowdsourced
wow:
- crowdsourced
languages:
- en
licenses:
- mit
multilinguality:
- monolingual
size_categories:
aidayago2:
- 10K<n<100K
cweb:
- 10K<n<100K
eli5:
- 100K<n<1M
fever:
- 100K<n<1M
hotpotqa:
- 100K<n<1M
nq:
- 10K<n<100K
structured_zeroshot:
- 100K<n<1M
trex:
- n>1M
triviaqa_support_only:
- 10K<n<100K
wned:
- 1K<n<10K
wow:
- 100K<n<1M
source_datasets:
aidayago2:
- extended|other-aidayago
- original
cweb:
- extended|other-wned-cweb
- original
eli5:
- extended|other-hotpotqa
- original
fever:
- extended|other-fever
- original
hotpotqa:
- extended|other-hotpotqa
- original
nq:
- extended|natural_questions
- original
structured_zeroshot:
- extended|other-zero-shot-re
- original
trex:
- extended|other-trex
- original
triviaqa_support_only:
- extended|other-triviaqa
- original
wned:
- extended|other-wned-wiki
- original
wow:
- extended|other-wizardsofwikipedia
- original
task_categories:
aidayago2:
- text-retrieval
cweb:
- text-retrieval
eli5:
- question-answering
- text-retrieval
fever:
- text-classification
- text-retrieval
hotpotqa:
- question-answering
- text-retrieval
nq:
- question-answering
- text-retrieval
structured_zeroshot:
- sequence-modeling
- text-retrieval
trex:
- sequence-modeling
- text-retrieval
triviaqa_support_only:
- question-answering
- text-retrieval
wned:
- text-retrieval
wow:
- sequence-modeling
- text-retrieval
task_ids:
aidayago2:
- document-retrieval
- entity-linking-retrieval
cweb:
- document-retrieval
- entity-linking-retrieval
eli5:
- abstractive-qa
- document-retrieval
- open-domain-qa
fever:
- document-retrieval
- fact-checking
- fact-checking-retrieval
hotpotqa:
- document-retrieval
- extractive-qa
- open-domain-qa
nq:
- document-retrieval
- extractive-qa
- open-domain-qa
structured_zeroshot:
- document-retrieval
- slot-filling
trex:
- document-retrieval
- slot-filling
triviaqa_support_only:
- document-retrieval
- extractive-qa
- open-domain-qa
wned:
- document-retrieval
- entity-linking-retrieval
wow:
- dialogue-modeling
- document-retrieval
---
# Dataset Card for KILT
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://ai.facebook.com/tools/kilt/
- **Repository:** https://github.com/facebookresearch/KILT
- **Paper:** https://arxiv.org/abs/2009.02252
- **Leaderboard:** https://eval.ai/web/challenges/challenge-page/689/leaderboard/
- **Point of Contact:** [Needs More Information]
### Dataset Summary
KILT has been built from 11 datasets representing 5 types of tasks:
- Fact-checking
- Entity linking
- Slot filling
- Open domain QA
- Dialog generation
All these datasets have been grounded in a single pre-processed Wikipedia dump, allowing for fairer and more consistent evaluation as well as enabling new task setups such as multitask and transfer learning with minimal effort. KILT also provides tools to analyze and understand the predictions made by models, as well as the evidence they provide for their predictions.
#### Loading the KILT knowledge source and task data
The original KILT [release](https://github.com/facebookresearch/KILT) only provides question IDs for the TriviaQA task. Using the full dataset requires mapping those back to the TriviaQA questions, which can be done as follows:
```python
from datasets import load_dataset
# Get the pre-processed Wikipedia knowledge source for kild
kilt_wiki = load_dataset("kilt_wikipedia")
# Get the KILT task datasets
kilt_triviaqa = load_dataset("kilt_tasks", name="triviaqa_support_only")
# Most tasks in KILT already have all required data, but KILT-TriviaQA
# only provides the question IDs, not the questions themselves.
# Thankfully, we can get the original TriviaQA data with:
trivia_qa = load_dataset('trivia_qa', 'unfiltered.nocontext')
# The KILT IDs can then be mapped to the TriviaQA questions with:
triviaqa_map = {}
for k in ['train', 'validation', 'test']:
triviaqa_map = dict([(q_id, i) for i, q_id in enumerate(trivia_qa[k]['question_id'])])
kilt_triviaqa[k] = kilt_triviaqa[k].filter(lambda x: x['id'] in triviaqa_map)
kilt_triviaqa[k] = kilt_triviaqa[k].map(lambda x: {'input': trivia_qa[k][triviaqa_map[x['id']]]['question']})
```
### Supported Tasks and Leaderboards
The dataset supports a leaderboard that evaluates models against task-specific metrics such as F1 or EM, as well as their ability to retrieve supporting information from Wikipedia.
The current best performing models can be found [here](https://eval.ai/web/challenges/challenge-page/689/leaderboard/).
### Languages
All tasks are in English (`en`).
## Dataset Structure
### Data Instances
An example of open-domain QA from the Natural Questions `nq` configuration looks as follows:
```
{'id': '-5004457603684974952',
'input': 'who is playing the halftime show at super bowl 2016',
'meta': {'left_context': '',
'mention': '',
'obj_surface': [],
'partial_evidence': [],
'right_context': '',
'sub_surface': [],
'subj_aliases': [],
'template_questions': []},
'output': [{'answer': 'Coldplay',
'meta': {'score': 0},
'provenance': [{'bleu_score': 1.0,
'end_character': 186,
'end_paragraph_id': 1,
'meta': {'annotation_id': '-1',
'evidence_span': [],
'fever_page_id': '',
'fever_sentence_id': -1,
'yes_no_answer': ''},
'section': 'Section::::Abstract.',
'start_character': 178,
'start_paragraph_id': 1,
'title': 'Super Bowl 50 halftime show',
'wikipedia_id': '45267196'}]},
{'answer': 'Beyoncé',
'meta': {'score': 0},
'provenance': [{'bleu_score': 1.0,
'end_character': 224,
'end_paragraph_id': 1,
'meta': {'annotation_id': '-1',
'evidence_span': [],
'fever_page_id': '',
'fever_sentence_id': -1,
'yes_no_answer': ''},
'section': 'Section::::Abstract.',
'start_character': 217,
'start_paragraph_id': 1,
'title': 'Super Bowl 50 halftime show',
'wikipedia_id': '45267196'}]},
{'answer': 'Bruno Mars',
'meta': {'score': 0},
'provenance': [{'bleu_score': 1.0,
'end_character': 239,
'end_paragraph_id': 1,
'meta': {'annotation_id': '-1',
'evidence_span': [],
'fever_page_id': '',
'fever_sentence_id': -1,
'yes_no_answer': ''},
'section': 'Section::::Abstract.',
'start_character': 229,
'start_paragraph_id': 1,
'title': 'Super Bowl 50 halftime show',
'wikipedia_id': '45267196'}]},
{'answer': 'Coldplay with special guest performers Beyoncé and Bruno Mars',
'meta': {'score': 0},
'provenance': []},
{'answer': 'British rock group Coldplay with special guest performers Beyoncé and Bruno Mars',
'meta': {'score': 0},
'provenance': []},
{'answer': '',
'meta': {'score': 0},
'provenance': [{'bleu_score': 0.9657992720603943,
'end_character': 341,
'end_paragraph_id': 1,
'meta': {'annotation_id': '2430977867500315580',
'evidence_span': [],
'fever_page_id': '',
'fever_sentence_id': -1,
'yes_no_answer': 'NONE'},
'section': 'Section::::Abstract.',
'start_character': 0,
'start_paragraph_id': 1,
'title': 'Super Bowl 50 halftime show',
'wikipedia_id': '45267196'}]},
{'answer': '',
'meta': {'score': 0},
'provenance': [{'bleu_score': -1.0,
'end_character': -1,
'end_paragraph_id': 1,
'meta': {'annotation_id': '-1',
'evidence_span': ['It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars',
'It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars, who previously had headlined the Super Bowl XLVII and Super Bowl XLVIII halftime shows, respectively.',
"The Super Bowl 50 Halftime Show took place on February 7, 2016, at Levi's Stadium in Santa Clara, California as part of Super Bowl 50. It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars",
"The Super Bowl 50 Halftime Show took place on February 7, 2016, at Levi's Stadium in Santa Clara, California as part of Super Bowl 50. It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars,"],
'fever_page_id': '',
'fever_sentence_id': -1,
'yes_no_answer': ''},
'section': 'Section::::Abstract.',
'start_character': -1,
'start_paragraph_id': 1,
'title': 'Super Bowl 50 halftime show',
'wikipedia_id': '45267196'}]}]}
```
### Data Fields
Examples from all configurations have the following features:
- `input`: a `string` feature representing the query.
- `output`: a `list` of features each containing information for an answer, made up of:
- `answer`: a `string` feature representing a possible answer.
- `provenance`: a `list` of features representing Wikipedia passages that support the `answer`, denoted by:
- `title`: a `string` feature, the title of the Wikipedia article the passage was retrieved from.
- `section`: a `string` feature, the title of the section in Wikipedia article.
- `wikipedia_id`: a `string` feature, a unique identifier for the Wikipedia article.
- `start_character`: a `int32` feature.
- `start_paragraph_id`: a `int32` feature.
- `end_character`: a `int32` feature.
- `end_paragraph_id`: a `int32` feature.
### Data Splits
[Needs More Information]
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
[Needs More Information]
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@yjernite](https://github.com/yjernite) for adding this dataset. |