File size: 10,077 Bytes
9c6e082
 
 
 
 
 
 
 
 
73213f7
cff06be
 
f5909dc
cff06be
 
 
 
 
 
 
 
98296c8
cff06be
 
 
8605650
cff06be
 
 
8605650
cff06be
8605650
cff06be
 
 
 
 
8605650
cff06be
 
73213f7
cff06be
 
 
 
 
 
8605650
cff06be
 
8a539fc
cff06be
8605650
98296c8
 
20dc7be
 
cff06be
8605650
cff06be
46c23b7
ceb4c74
8605650
ceb4c74
98296c8
ceb4c74
c778782
 
ceb4c74
b97f6c3
ceb4c74
b97f6c3
c778782
ceb4c74
 
b97f6c3
 
 
 
 
 
 
ceb4c74
 
 
 
 
d64f300
 
 
 
af2b300
d64f300
 
 
 
 
 
 
 
 
 
ceb4c74
 
 
 
 
cff06be
af2b300
 
 
 
20dc7be
af2b300
 
 
20dc7be
98296c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff06be
f1a9f20
46c23b7
 
f1a9f20
 
cff06be
 
 
46c23b7
cff06be
46c23b7
cff06be
8605650
20dc7be
f1a9f20
cff06be
20dc7be
cff06be
20dc7be
 
 
 
 
f1a9f20
cff06be
20dc7be
 
8605650
46c23b7
 
20dc7be
98296c8
 
 
20dc7be
 
 
 
cff06be
 
20dc7be
 
 
 
 
 
cff06be
8605650
20dc7be
 
 
 
 
cff06be
 
 
 
20dc7be
cff06be
 
 
 
ceb4c74
98296c8
 
cff06be
 
20dc7be
 
cff06be
 
 
8605650
5082185
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
license: cc
task_categories:
- text-to-image
tags:
- art
size_categories:
- 10M<n<100M
---
# Dataset Card for Fondant Creative Commons 25 million (fondant-cc-25m)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6266919100f1a3335dbd966f/latKi21OzpP2gaIvMGXz5.png)

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Changelog](#changelog)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [How to use it](#how-to-use-it)
  - [How to contribute](#how-to-contribute)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Data Collection and Preprocessing](#data-collection-and-preprocessing)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Opting out](#opting-out)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Discussion of Biases](#discussion-of-biases)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Contact](#contact)


## Dataset Description
- **Homepage:** https://www.fondant.ai/
- **Repository:** https://github.com/ml6team/fondant
- **Paper:** N/A
- **Leaderboard:** N/A
- **Point of Contact:** [email protected]

### Changelog
|Release|Description|
|-|-|
|v0.1| Release of the Fondant-cc-25m dataset

### Dataset Summary
Fondant-cc-25m contains 25 million image URLs with their respective [Creative Commons](https://creativecommons.org/) 
license information collected from the [Common Crawl web corpus](https://commoncrawl.org/). 
The dataset was created using [Fondant](https://fondant.ai), an open source framework that aims to simplify and speed up 
large-scale data processing by making self-contained pipeline components reusable across pipelines, infrastructures and shareable within the community.

### Supported Tasks and Leaderboards

This dataset can be used for training or fine-tuning image generation or computer vision models.

### How to use it

We have prepared a sample Fondant pipeline for downloading the dataset or part of it.

To execute the pipeline locally, you must have [docker compose](https://docs.docker.com/compose/),
[Python](https://python.org) >=3.8 and [Git](https://git-scm.com/) installed on your system.

First install Fondant by running:

```bash
pip install fondant
```

Then clone the [Fondant GitHub repository](https://github.com/ml6team/fondant)

```bash
git clone https://github.com/ml6team/fondant.git
```

Then make sure that Docker Compose is running, navigate to `examples/pipelines/filter-cc-25m`, and initiate the pipeline by executing:

```bash
fondant run pipeline --local
```

**Note:** For local testing purposes, the pipeline will only download the first 100,000 images. 
If you want to download the full dataset, you will need to modify the component arguments in the `pipeline.py` file, 
specifically the following part: 

```python
load_from_hf_hub = ComponentOp(
    component_dir="components/load_from_hf_hub",
    arguments={
        "dataset_name": "fondant-ai/fondant-cc-25m",
        "column_name_mapping": load_component_column_mapping,
        "n_rows_to_load": <HERE INSERT THE NUMBER OF IMAGES YOU WANT TO DOWNLOAD>
    },
)
```

To visually inspect the results quickly, you can use:

```bash
fondant explore --base_path ./data
```

You can also choose to download images to your local machine if you prefer, we have provided an [example script](https://huggingface.co/datasets/fondant-ai/fondant-cc-25m/blob/main/extract_images.py)
that enabled this: 

To run the script, you can simply execute the following: 

```bash
python extract_images.py --parquet_file <Path to the Parquet file or folder containing the images> --save_folder <The folder where to save the images to>
```

### How to contribute
If you want to contribute to the dataset, the best way is to help us develop pipeline components for further processing. Components
we are currently looking to add are the following ([GitHub issues](https://github.com/ml6team/fondant/issues?q=is%3Aissue+is%3Aopen+label%3A%22Component+Contribution%22)):
- Image-based deduplication
- Visual quality / aesthetic quality estimation
- Automatic captioning
- Not safe for work (NSFW) content detection
- Watermark detection
- Face detection
- Personal Identifiable Information (PII) detection
- Text detection
- AI generated image detection
- CLIP embedding generation
- Image-text CLIP similarity
- ...
We are also looking for core framework contributors and users who are willing to give feedback on usability and suggest potential improvements


## Dataset Structure
### Data Instances
Each data instance corresponds to one image. The URL of the image is in the `image_url` feature, and other features (`alt_text`, `webpage_url`, etc) provide some 
metadata. Note that images have been deduplicated only based on their URLs.

### Data Fields
- `image_url` (string): image url to download the image
- `alt_text` (string): alternative text of the image
- `webpage_url` (string): webpage source of the image
- `license_type` (string): creative commons license type of the image
- `license_location` (string): location of the license on the webpage
- `sort_url` (string): sort friendly image url with top level domain as the prefix

### Data Splits
We do not provide any canonical splits for fondant-cc-25m.

## Dataset Creation

### Curation Rationale
Current AI image generation models such as Stable Diffusion and Dall-E are trained on hundreds of millions of images from the public Internet 
including copyrighted work. This creates legal risks and uncertainties for users of these images and is unfair towards copyright holders who 
may not want their proprietary work reproduced without consent. 
By releasing a Creative Commons image dataset, we hope to mitigate legal risks and empower ethical AI development that respects copyright.
This dataset is the first step towards our goal of a 500M Creative Commons image dataset.

### Source Data
fondant-cc-25m is built from CommonCrawl dumps. These dumps are constructed from crawling publicly available web pages.

### Data Collection and Preprocessing
Permissive licenses have minimal restrictions on how the image can be copied, modified, and redistributed. 
The full list of licenses can be found [here](https://creativecommons.org/about/cclicenses/).
We examined HTML tags of the webpages for the presence of Creative Commons license URLs. A webpage was marked permissive only when a license URL was found in 
its footer, aside or sidebar. This was the case only in around 0.164% of images which suggests that image generation models trained on a random sample from
the public internet may be trained on up to 99.836% images that may be copyrighted.

Subsequently, all the image URLs present on the web page were collected together with the license information.
A manual test of 1032 randomly sampled images showed an accuracy of 96.32% in which case the image was actually released under a Creative Commons license.
False positives could be due to parsing errors but also incorrect attributions: images indicated by the publisher to be CC which are not.
More information on our approach can be found in [this blogpost](https://blog.ml6.eu/ai-image-generation-without-copyright-infringement-a9901b64541c).

### Personal and Sensitive Information
The released dataset may contain sensitive information such as names, emails and addresses that have previously been published to the Internet. 
In the event that the dataset contains personal information, researchers should only use public, non-personal information in support of conducting 
and publishing their [open-access](https://en.wikipedia.org/wiki/Open_access) research. Personal information should not be used for spamming purposes, 
including sending unsolicited emails or selling of personal information. Complaints, removal requests, and "do not contact" requests can be sent to [email protected].
The PII filtering pipeline for this dataset is still a work in progress. Researchers that wish to contribute to the anonymization pipeline of the project can join 
[here](https://github.com/ml6team/fondant/tree/main#-contributing). 

### Opting out
Fondant-cc-25m is based on CommonCrawl. Their crawler honors opt-out requests in the robots.txt, see the 
[CC FAQ](https://commoncrawl.org/big-picture/frequently-asked-questions/) for details.

We are giving the public the ability to have their image removed from the dataset upon request. The process for submitting and enacting removal requests will keep 
evolving throughout the project as we receive feedback and build up more data governance tools.
If you'd like to have your data removed from the dataset, [contact us](mailto:[email protected]).

## Considerations for Using the Data
### Discussion of Biases
As toxic or biased data is prevalent on the internet, it is possible that our dataset contains such content. 

## Additional Information

### Dataset Curators
1. Sharon Grundmann, ML6, [email protected]
2. Matthias Richter, ML6, [email protected]
3. Robbe Sneyders, ML6, [email protected]

### Licensing Information
Fondant-cc-25m is a collection of images with various Creative Commons and other public licenses. Any use of all or part of the images gathered in Fondant-cc-25m 
must abide by the terms of the original licenses, including attribution clauses when relevant. We facilitate this by providing provenance information for each data point.

The list of Creative Commons license types included in the dataset can be found [here](https://creativecommons.org/about/cclicenses/).

### Contact
- Email: [[email protected]](mailto:[email protected])
- Discord: [https://discord.gg/HnTdWhydGp](https://discord.gg/HnTdWhydGp)