Datasets:
File size: 7,268 Bytes
c61b0f1 3af6558 c61b0f1 3af6558 c61b0f1 afe4395 c61b0f1 b3bd330 7ebc014 25215cc bbe5929 84df3eb bbe5929 df0c4ed 84df3eb df0c4ed bbe5929 84df3eb bbe5929 84df3eb bbe5929 84df3eb bbe5929 df0c4ed 84df3eb df0c4ed bbe5929 84df3eb bbe5929 84df3eb c61b0f1 b3bd330 c61b0f1 b3ef61b c61b0f1 b3ef61b 25215cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
---
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|natural_questions
- extended|other-Common-Crawl
- original
task_categories:
- other
- question-answering
- text2text-generation
task_ids:
- abstractive-qa
- extractive-qa
paperswithcode_id: aquamuse
pretty_name: AQuaMuSe
tags:
- query-based-multi-document-summarization
dataset_info:
- config_name: abstractive
features:
- name: query
dtype: string
- name: input_urls
sequence: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 6434893
num_examples: 6253
- name: test
num_bytes: 843165
num_examples: 811
- name: validation
num_bytes: 689093
num_examples: 661
download_size: 5167854
dataset_size: 7967151
- config_name: extractive
features:
- name: query
dtype: string
- name: input_urls
sequence: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 6434893
num_examples: 6253
- name: test
num_bytes: 843165
num_examples: 811
- name: validation
num_bytes: 689093
num_examples: 661
download_size: 5162151
dataset_size: 7967151
configs:
- config_name: abstractive
data_files:
- split: train
path: abstractive/train-*
- split: test
path: abstractive/test-*
- split: validation
path: abstractive/validation-*
- config_name: extractive
data_files:
- split: train
path: extractive/train-*
- split: test
path: extractive/test-*
- split: validation
path: extractive/validation-*
---
# Dataset Card for AQuaMuSe
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/google-research-datasets/aquamuse
- **Repository:** https://github.com/google-research-datasets/aquamuse
- **Paper:** https://arxiv.org/pdf/2010.12694.pdf
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)
This dataset contains versions of automatically generated datasets for abstractive and extractive query-based multi-document summarization as described in [AQuaMuSe paper](https://arxiv.org/pdf/2010.12694.pdf).
### Supported Tasks and Leaderboards
- **Abstractive** and **Extractive** query-based multi-document summarization
- Question Answering
### Languages
en : English
## Dataset Structure
### Data Instances
- `input_urls`: a `list` of `string` features.
- `query`: a `string` feature.
- `target`: a `string` feature
Example:
```
{
'input_urls': ['https://boxofficebuz.com/person/19653-charles-michael-davis'],
'query': 'who is the actor that plays marcel on the originals',
'target': "In February 2013, it was announced that Davis was cast in a lead role on The CW's new show The
Originals, a spinoff of The Vampire Diaries, centered on the Original Family as they move to New Orleans, where
Davis' character (a vampire named Marcel) currently rules."
}
```
### Data Fields
- `input_urls`: a `list` of `string` features.
- List of URLs to input documents pointing to [Common Crawl](https://commoncrawl.org/2017/07/june-2017-crawl-archive-now-available) to be summarized.
- Dependencies: Documents URLs references the [Common Crawl June 2017 Archive](https://commoncrawl.org/2017/07/june-2017-crawl-archive-now-available).
- `query`: a `string` feature.
- Input query to be used as summarization context. This is derived from [Natural Questions](https://ai.google.com/research/NaturalQuestions/) user queries.
- `target`: a `string` feature
- Summarization target, derived from [Natural Questions](https://ai.google.com/research/NaturalQuestions/) long answers.
### Data Splits
- This dataset has two high-level configurations `abstractive` and `extractive`
- Each configuration has the data splits of `train`, `dev` and `test`
- The original format of the data was in [TFrecords](https://www.tensorflow.org/tutorials/load_data/tfrecord), which has been parsed to the format as specified in [Data Instances](#data-instances)
## Dataset Creation
### Curation Rationale
The dataset is automatically generated datasets for abstractive and extractive query-based multi-document summarization as described in [AQuaMuSe paper](https://arxiv.org/pdf/2010.12694.pdf).
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset curator is [sayalikulkarni](https://github.com/google-research-datasets/aquamuse/commits?author=sayalikulkarni), who is the contributor for the official GitHub repository for this dataset and also one of the authors of this dataset’s paper. As the account handles of other authors are not available currently who were also part of the curation of this dataset, the authors of the paper are mentioned here as follows, Sayali Kulkarni, Sheide Chammas, Wan Zhu, Fei Sha, and Eugene Ie.
### Licensing Information
[More Information Needed]
### Citation Information
@misc{kulkarni2020aquamuse,
title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},
author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},
year={2020},
eprint={2010.12694},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
### Contributions
Thanks to [@Karthik-Bhaskar](https://github.com/Karthik-Bhaskar) for adding this dataset. |