Datasets:

Languages:
English
ArXiv:
License:
File size: 7,720 Bytes
95f0b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad41740
95f0b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad41740
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
languages:
- en
licenses:
- cc-by-4-0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- sequence-modeling
task_ids:
- dialogue-modeling
---

# Dataset Card Creation Guide

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Taskmaster-1](https://research.google/tools/datasets/taskmaster-1/)
- **Repository:** [GitHub](https://github.com/google-research-datasets/Taskmaster/tree/master/TM-2-2020)
- **Paper:** [Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset](https://arxiv.org/abs/1909.05358)
- **Leaderboard:** N/A
- **Point of Contact:** [Taskmaster Googlegroup]([email protected])

### Dataset Summary

Taskmaster is dataset for goal oriented conversations. The Taskmaster-2 dataset consists of 17,289 dialogs
in the seven domains which include restaurants, food ordering, movies, hotels, flights, music and sports. 
Unlike Taskmaster-1, which includes both written "self-dialogs" and spoken two-person dialogs,
Taskmaster-2 consists entirely of spoken two-person dialogs. In addition, while Taskmaster-1 is
almost exclusively task-based, Taskmaster-2 contains a good number of search- and recommendation-oriented dialogs.
All dialogs in this release were created using a Wizard of Oz (WOz) methodology in which crowdsourced
workers played the role of a 'user' and trained call center operators played the role of the 'assistant'.
In this way, users were led to believe they were interacting with an automated system that “spoke”
using text-to-speech (TTS) even though it was in fact a human behind the scenes.
As a result, users could express themselves however they chose in the context of an automated interface.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

The dataset is in English language.

## Dataset Structure

### Data Instances

A typical example looks like this

```
{
    "conversation_id": "dlg-0047a087-6a3c-4f27-b0e6-268f53a2e013",
    "instruction_id": "flight-6",
    "utterances": [
        {
            "index": 0,
            "segments": [],
            "speaker": "USER",
            "text": "Hi, I'm looking for a flight. I need to visit a friend."
        },
        {
            "index": 1,
            "segments": [],
            "speaker": "ASSISTANT",
            "text": "Hello, how can I help you?"
        },
        {
            "index": 2,
            "segments": [],
            "speaker": "ASSISTANT",
            "text": "Sure, I can help you with that."
        },
        {
            "index": 3,
            "segments": [],
            "speaker": "ASSISTANT",
            "text": "On what dates?"
        },
        {
            "index": 4,
            "segments": [
                {
                    "annotations": [
                        {
                            "name": "flight_search.date.depart_origin"
                        }
                    ],
                    "end_index": 37,
                    "start_index": 27,
                    "text": "March 20th"
                },
                {
                    "annotations": [
                        {
                            "name": "flight_search.date.return"
                        }
                    ],
                    "end_index": 45,
                    "start_index": 41,
                    "text": "22nd"
                }
            ],
            "speaker": "USER",
            "text": "I'm looking to travel from March 20th to 22nd."
        }
    ]
}
```

### Data Fields

Each conversation in the data file has the following structure:

- `conversation_id`: A universally unique identifier with the prefix 'dlg-'. The ID has no meaning.
- `utterances`: A list of utterances that make up the conversation.
- `instruction_id`: A reference to the file(s) containing the user (and, if applicable, agent) instructions for this conversation.

Each utterance has the following fields:

- `index`: A 0-based index indicating the order of the utterances in the conversation.
- `speaker`: Either USER or ASSISTANT, indicating which role generated this utterance.
- `text`: The raw text of the utterance. In case of self dialogs (one_person_dialogs), this is written by the crowdsourced worker. In case of the WOz dialogs, 'ASSISTANT' turns are written and 'USER' turns are transcribed from the spoken recordings of crowdsourced workers.
- `segments`: A list of various text spans with semantic annotations.

Each segment has the following fields:

- `start_index`: The position of the start of the annotation in the utterance text.
- `end_index`: The position of the end of the annotation in the utterance text.
- `text`: The raw text that has been annotated.
- `annotations`: A list of annotation details for this segment.

Each annotation has a single field:

- `name`: The annotation name.



### Data Splits

There are no deafults splits for all the config. The below table lists the number of examples in each config.

| Config            | Train  |
|-------------------|--------|
| flights           | 2481   |
| food-orderings    | 1050   |
| hotels            | 2355   |
| movies            | 3047   |
| music             | 1602   |
| restaurant-search | 3276   |
| sports            | 3478   |


## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The dataset is licensed under `Creative Commons Attribution 4.0 License`

### Citation Information

[More Information Needed]
```
@inproceedings{48484,
title	= {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},
author	= {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},
year	= {2019}
}
```
### Contributions

Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset.