Datasets:

Languages:
English
ArXiv:
License:
albertvillanova HF staff commited on
Commit
e1e7b4a
1 Parent(s): b794b73

Delete legacy JSON metadata (#3)

Browse files

- Delete legacy JSON metadata (c85f19e39b5fe7e2b60ed8a8635228523ef45cb8)

Files changed (1) hide show
  1. dataset_infos.json +0 -1
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"flights": {"description": "Taskmaster is dataset for goal oriented conversations. The Taskmaster-2 dataset consists of 17,289 dialogs in the seven domains which include restaurants, food ordering, movies, hotels, flights, music and sports. Unlike Taskmaster-1, which includes both written \"self-dialogs\" and spoken two-person dialogs, Taskmaster-2 consists entirely of spoken two-person dialogs. In addition, while Taskmaster-1 is almost exclusively task-based, Taskmaster-2 contains a good number of search- and recommendation-oriented dialogs. All dialogs in this release were created using a Wizard of Oz (WOz) methodology in which crowdsourced workers played the role of a 'user' and trained call center operators played the role of the 'assistant'. In this way, users were led to believe they were interacting with an automated system that \u201cspoke\u201d using text-to-speech (TTS) even though it was in fact a human behind the scenes. As a result, users could express themselves however they chose in the context of an automated interface.\n", "citation": "@inproceedings{48484,\ntitle\t= {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},\nauthor\t= {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},\nyear\t= {2019}\n}\n", "homepage": "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-2-2020", "license": "", "features": {"conversation_id": {"dtype": "string", "id": null, "_type": "Value"}, "instruction_id": {"dtype": "string", "id": null, "_type": "Value"}, "utterances": [{"index": {"dtype": "int32", "id": null, "_type": "Value"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "segments": [{"start_index": {"dtype": "int32", "id": null, "_type": "Value"}, "end_index": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": [{"name": {"dtype": "string", "id": null, "_type": "Value"}}]}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "taskmaster2", "config_name": "flights", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 7073487, "num_examples": 2481, "dataset_name": "taskmaster2"}}, "download_checksums": {"https://raw.githubusercontent.com/google-research-datasets/Taskmaster/master/TM-2-2020/data/flights.json": {"num_bytes": 23029880, "checksum": "86b37b5ae25f530fd18ced78800d30c3b54f7b34bb208ecb51842718f04e760b"}}, "download_size": 23029880, "post_processing_size": null, "dataset_size": 7073487, "size_in_bytes": 30103367}, "food-ordering": {"description": "Taskmaster is dataset for goal oriented conversationas. The Taskmaster-2 dataset consists of 17,289 dialogs in the seven domains which include restaurants, food ordering, movies, hotels, flights, music and sports. Unlike Taskmaster-1, which includes both written \"self-dialogs\" and spoken two-person dialogs, Taskmaster-2 consists entirely of spoken two-person dialogs. In addition, while Taskmaster-1 is almost exclusively task-based, Taskmaster-2 contains a good number of search- and recommendation-oriented dialogs. All dialogs in this release were created using a Wizard of Oz (WOz) methodology in which crowdsourced workers played the role of a 'user' and trained call center operators played the role of the 'assistant'. In this way, users were led to believe they were interacting with an automated system that \u201cspoke\u201d using text-to-speech (TTS) even though it was in fact a human behind the scenes. As a result, users could express themselves however they chose in the context of an automated interface.\n", "citation": "@inproceedings{48484,\ntitle\t= {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},\nauthor\t= {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},\nyear\t= {2019}\n}\n", "homepage": "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-2-2020", "license": "", "features": {"conversation_id": {"dtype": "string", "id": null, "_type": "Value"}, "instruction_id": {"dtype": "string", "id": null, "_type": "Value"}, "utterances": [{"index": {"dtype": "int32", "id": null, "_type": "Value"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "segments": [{"start_index": {"dtype": "int32", "id": null, "_type": "Value"}, "end_index": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": [{"name": {"dtype": "string", "id": null, "_type": "Value"}}]}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "taskmaster2", "config_name": "food-ordering", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1734825, "num_examples": 1050, "dataset_name": "taskmaster2"}}, "download_checksums": {"https://raw.githubusercontent.com/google-research-datasets/Taskmaster/master/TM-2-2020/data/food-ordering.json": {"num_bytes": 5376675, "checksum": "0a042e566a816a5d0abebe6f7e8cfd6abaa89729ffc42f433d327df7342b12f8"}}, "download_size": 5376675, "post_processing_size": null, "dataset_size": 1734825, "size_in_bytes": 7111500}, "hotels": {"description": "Taskmaster is dataset for goal oriented conversationas. The Taskmaster-2 dataset consists of 17,289 dialogs in the seven domains which include restaurants, food ordering, movies, hotels, flights, music and sports. Unlike Taskmaster-1, which includes both written \"self-dialogs\" and spoken two-person dialogs, Taskmaster-2 consists entirely of spoken two-person dialogs. In addition, while Taskmaster-1 is almost exclusively task-based, Taskmaster-2 contains a good number of search- and recommendation-oriented dialogs. All dialogs in this release were created using a Wizard of Oz (WOz) methodology in which crowdsourced workers played the role of a 'user' and trained call center operators played the role of the 'assistant'. In this way, users were led to believe they were interacting with an automated system that \u201cspoke\u201d using text-to-speech (TTS) even though it was in fact a human behind the scenes. As a result, users could express themselves however they chose in the context of an automated interface.\n", "citation": "@inproceedings{48484,\ntitle\t= {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},\nauthor\t= {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},\nyear\t= {2019}\n}\n", "homepage": "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-2-2020", "license": "", "features": {"conversation_id": {"dtype": "string", "id": null, "_type": "Value"}, "instruction_id": {"dtype": "string", "id": null, "_type": "Value"}, "utterances": [{"index": {"dtype": "int32", "id": null, "_type": "Value"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "segments": [{"start_index": {"dtype": "int32", "id": null, "_type": "Value"}, "end_index": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": [{"name": {"dtype": "string", "id": null, "_type": "Value"}}]}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "taskmaster2", "config_name": "hotels", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 7436667, "num_examples": 2357, "dataset_name": "taskmaster2"}}, "download_checksums": {"https://raw.githubusercontent.com/google-research-datasets/Taskmaster/master/TM-2-2020/data/hotels.json": {"num_bytes": 22507266, "checksum": "975b0242f1e37ea1ab94ccedd7e0d6ee5831599d5df1f16143e71110d6c6006a"}}, "download_size": 22507266, "post_processing_size": null, "dataset_size": 7436667, "size_in_bytes": 29943933}, "movies": {"description": "Taskmaster is dataset for goal oriented conversationas. The Taskmaster-2 dataset consists of 17,289 dialogs in the seven domains which include restaurants, food ordering, movies, hotels, flights, music and sports. Unlike Taskmaster-1, which includes both written \"self-dialogs\" and spoken two-person dialogs, Taskmaster-2 consists entirely of spoken two-person dialogs. In addition, while Taskmaster-1 is almost exclusively task-based, Taskmaster-2 contains a good number of search- and recommendation-oriented dialogs. All dialogs in this release were created using a Wizard of Oz (WOz) methodology in which crowdsourced workers played the role of a 'user' and trained call center operators played the role of the 'assistant'. In this way, users were led to believe they were interacting with an automated system that \u201cspoke\u201d using text-to-speech (TTS) even though it was in fact a human behind the scenes. As a result, users could express themselves however they chose in the context of an automated interface.\n", "citation": "@inproceedings{48484,\ntitle\t= {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},\nauthor\t= {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},\nyear\t= {2019}\n}\n", "homepage": "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-2-2020", "license": "", "features": {"conversation_id": {"dtype": "string", "id": null, "_type": "Value"}, "instruction_id": {"dtype": "string", "id": null, "_type": "Value"}, "utterances": [{"index": {"dtype": "int32", "id": null, "_type": "Value"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "segments": [{"start_index": {"dtype": "int32", "id": null, "_type": "Value"}, "end_index": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": [{"name": {"dtype": "string", "id": null, "_type": "Value"}}]}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "taskmaster2", "config_name": "movies", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 7112301, "num_examples": 3056, "dataset_name": "taskmaster2"}}, "download_checksums": {"https://raw.githubusercontent.com/google-research-datasets/Taskmaster/master/TM-2-2020/data/movies.json": {"num_bytes": 21189893, "checksum": "6f67c9a1f04abc111186e5bcfbe3050be01d0737fd6422901402715bc1f3dd0d"}}, "download_size": 21189893, "post_processing_size": null, "dataset_size": 7112301, "size_in_bytes": 28302194}, "music": {"description": "Taskmaster is dataset for goal oriented conversationas. The Taskmaster-2 dataset consists of 17,289 dialogs in the seven domains which include restaurants, food ordering, movies, hotels, flights, music and sports. Unlike Taskmaster-1, which includes both written \"self-dialogs\" and spoken two-person dialogs, Taskmaster-2 consists entirely of spoken two-person dialogs. In addition, while Taskmaster-1 is almost exclusively task-based, Taskmaster-2 contains a good number of search- and recommendation-oriented dialogs. All dialogs in this release were created using a Wizard of Oz (WOz) methodology in which crowdsourced workers played the role of a 'user' and trained call center operators played the role of the 'assistant'. In this way, users were led to believe they were interacting with an automated system that \u201cspoke\u201d using text-to-speech (TTS) even though it was in fact a human behind the scenes. As a result, users could express themselves however they chose in the context of an automated interface.\n", "citation": "@inproceedings{48484,\ntitle\t= {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},\nauthor\t= {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},\nyear\t= {2019}\n}\n", "homepage": "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-2-2020", "license": "", "features": {"conversation_id": {"dtype": "string", "id": null, "_type": "Value"}, "instruction_id": {"dtype": "string", "id": null, "_type": "Value"}, "utterances": [{"index": {"dtype": "int32", "id": null, "_type": "Value"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "segments": [{"start_index": {"dtype": "int32", "id": null, "_type": "Value"}, "end_index": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": [{"name": {"dtype": "string", "id": null, "_type": "Value"}}]}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "taskmaster2", "config_name": "music", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2814030, "num_examples": 1603, "dataset_name": "taskmaster2"}}, "download_checksums": {"https://raw.githubusercontent.com/google-research-datasets/Taskmaster/master/TM-2-2020/data/music.json": {"num_bytes": 8981720, "checksum": "e5db60d6576fa010bef87a70a8b371d293d48cde8524c1d3ed7c3022f079d95d"}}, "download_size": 8981720, "post_processing_size": null, "dataset_size": 2814030, "size_in_bytes": 11795750}, "restaurant-search": {"description": "Taskmaster is dataset for goal oriented conversationas. The Taskmaster-2 dataset consists of 17,289 dialogs in the seven domains which include restaurants, food ordering, movies, hotels, flights, music and sports. Unlike Taskmaster-1, which includes both written \"self-dialogs\" and spoken two-person dialogs, Taskmaster-2 consists entirely of spoken two-person dialogs. In addition, while Taskmaster-1 is almost exclusively task-based, Taskmaster-2 contains a good number of search- and recommendation-oriented dialogs. All dialogs in this release were created using a Wizard of Oz (WOz) methodology in which crowdsourced workers played the role of a 'user' and trained call center operators played the role of the 'assistant'. In this way, users were led to believe they were interacting with an automated system that \u201cspoke\u201d using text-to-speech (TTS) even though it was in fact a human behind the scenes. As a result, users could express themselves however they chose in the context of an automated interface.\n", "citation": "@inproceedings{48484,\ntitle\t= {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},\nauthor\t= {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},\nyear\t= {2019}\n}\n", "homepage": "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-2-2020", "license": "", "features": {"conversation_id": {"dtype": "string", "id": null, "_type": "Value"}, "instruction_id": {"dtype": "string", "id": null, "_type": "Value"}, "utterances": [{"index": {"dtype": "int32", "id": null, "_type": "Value"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "segments": [{"start_index": {"dtype": "int32", "id": null, "_type": "Value"}, "end_index": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": [{"name": {"dtype": "string", "id": null, "_type": "Value"}}]}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "taskmaster2", "config_name": "restaurant-search", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 7341998, "num_examples": 3276, "dataset_name": "taskmaster2"}}, "download_checksums": {"https://raw.githubusercontent.com/google-research-datasets/Taskmaster/master/TM-2-2020/data/restaurant-search.json": {"num_bytes": 21472680, "checksum": "fb9735f89e7ebc7c877f976da4c30391af6a6277991b597c0755564657ff8f47"}}, "download_size": 21472680, "post_processing_size": null, "dataset_size": 7341998, "size_in_bytes": 28814678}, "sports": {"description": "Taskmaster is dataset for goal oriented conversationas. The Taskmaster-2 dataset consists of 17,289 dialogs in the seven domains which include restaurants, food ordering, movies, hotels, flights, music and sports. Unlike Taskmaster-1, which includes both written \"self-dialogs\" and spoken two-person dialogs, Taskmaster-2 consists entirely of spoken two-person dialogs. In addition, while Taskmaster-1 is almost exclusively task-based, Taskmaster-2 contains a good number of search- and recommendation-oriented dialogs. All dialogs in this release were created using a Wizard of Oz (WOz) methodology in which crowdsourced workers played the role of a 'user' and trained call center operators played the role of the 'assistant'. In this way, users were led to believe they were interacting with an automated system that \u201cspoke\u201d using text-to-speech (TTS) even though it was in fact a human behind the scenes. As a result, users could express themselves however they chose in the context of an automated interface.\n", "citation": "@inproceedings{48484,\ntitle\t= {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},\nauthor\t= {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},\nyear\t= {2019}\n}\n", "homepage": "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-2-2020", "license": "", "features": {"conversation_id": {"dtype": "string", "id": null, "_type": "Value"}, "instruction_id": {"dtype": "string", "id": null, "_type": "Value"}, "utterances": [{"index": {"dtype": "int32", "id": null, "_type": "Value"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "segments": [{"start_index": {"dtype": "int32", "id": null, "_type": "Value"}, "end_index": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": [{"name": {"dtype": "string", "id": null, "_type": "Value"}}]}]}]}, "post_processed": null, "supervised_keys": null, "builder_name": "taskmaster2", "config_name": "sports", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5738818, "num_examples": 3481, "dataset_name": "taskmaster2"}}, "download_checksums": {"https://raw.githubusercontent.com/google-research-datasets/Taskmaster/master/TM-2-2020/data/sports.json": {"num_bytes": 19549440, "checksum": "8191531bfa5a8426b1508c396ab9886a19c7c620b443c436ec10d8d4708d0eac"}}, "download_size": 19549440, "post_processing_size": null, "dataset_size": 5738818, "size_in_bytes": 25288258}}