Datasets:

Languages:
English
ArXiv:
License:
File size: 9,274 Bytes
da99b7b
 
 
 
 
99f1a4b
da99b7b
99f1a4b
040fa13
da99b7b
 
 
3099eb4
da99b7b
 
 
ee37b43
 
da99b7b
 
617611c
9cfe084
55b57b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da99b7b
 
4989509
da99b7b
 
 
 
617611c
da99b7b
 
 
617611c
 
da99b7b
 
 
 
 
 
 
 
 
 
 
 
 
aa6b60f
da99b7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa6b60f
 
 
55b57b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: null
pretty_name: taskmaster3
dataset_info:
  features:
  - name: conversation_id
    dtype: string
  - name: vertical
    dtype: string
  - name: instructions
    dtype: string
  - name: scenario
    dtype: string
  - name: utterances
    list:
    - name: index
      dtype: int32
    - name: speaker
      dtype: string
    - name: text
      dtype: string
    - name: apis
      list:
      - name: name
        dtype: string
      - name: index
        dtype: int32
      - name: args
        list:
        - name: arg_name
          dtype: string
        - name: arg_value
          dtype: string
      - name: response
        list:
        - name: response_name
          dtype: string
        - name: response_value
          dtype: string
    - name: segments
      list:
      - name: start_index
        dtype: int32
      - name: end_index
        dtype: int32
      - name: text
        dtype: string
      - name: annotations
        list:
        - name: name
          dtype: string
  splits:
  - name: train
    num_bytes: 143609327
    num_examples: 23757
  download_size: 313402141
  dataset_size: 143609327
---

# Dataset Card for taskmaster3

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Taskmaster](https://research.google/tools/datasets/taskmaster-1/)
- **Repository:** [GitHub](https://github.com/google-research-datasets/Taskmaster/tree/master/TM-3-2020)
- **Paper:** [Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset](https://arxiv.org/abs/1909.05358)
- **Leaderboard:** N/A
- **Point of Contact:** [Taskmaster Googlegroup]([email protected])

### Dataset Summary

Taskmaster is dataset for goal oriented conversations. The Taskmaster-3 dataset consists of 23,757 movie ticketing dialogs.
By "movie ticketing" we mean conversations where the customer's goal is to purchase tickets after deciding
on theater, time, movie name, number of tickets, and date, or opt out of the transaction. This collection
was created using the "self-dialog" method. This means a single, crowd-sourced worker is
paid to create a conversation writing turns for both speakers, i.e. the customer and the ticketing agent.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

The dataset is in English language.

## Dataset Structure

### Data Instances

A typical example looks like this

```
{
    "conversation_id": "dlg-ddee80da-9ffa-4773-9ce7-f73f727cb79c",
    "instructions": "SCENARIO: Pretend you’re *using a digital assistant to purchase tickets for a movie currently showing in theaters*.  ...",
    "scenario": "4 exchanges with 1 error and predefined variables",
    "utterances": [
        {
            "apis": [],
            "index": 0,
            "segments": [
                {
                    "annotations": [
                        {
                            "name": "num.tickets"
                        }
                    ],
                    "end_index": 21,
                    "start_index": 20,
                    "text": "2"
                },
                {
                    "annotations": [
                        {
                            "name": "name.movie"
                        }
                    ],
                    "end_index": 42,
                    "start_index": 37,
                    "text": "Mulan"
                }
            ],
            "speaker": "user",
            "text": "I would like to buy 2 tickets to see Mulan."
        },
        {
            "index": 6,
            "segments": [],
            "speaker": "user",
            "text": "Yes.",
            "apis": [
                {
                    "args": [
                        {
                            "arg_name": "name.movie",
                            "arg_value": "Mulan"
                        },
                        {
                            "arg_name": "name.theater",
                            "arg_value": "Mountain AMC 16"
                        }
                    ],
                    "index": 6,
                    "name": "book_tickets",
                    "response": [
                        {
                            "response_name": "status",
                            "response_value": "success"
                        }
                    ]
                }
            ]
        }
    ],
    "vertical": "Movie Tickets"
}
```

### Data Fields

Each conversation in the data file has the following structure:

- `conversation_id`: A universally unique identifier with the prefix 'dlg-'. The ID has no meaning.
- `utterances`: A list of utterances that make up the conversation.
- `instructions`: Instructions for the crowdsourced worker used in creating the conversation.
- `vertical`: In this dataset the vertical for all dialogs is "Movie Tickets".
- `scenario`: This is the title of the instructions for each dialog.

Each utterance has the following fields:

- `index`: A 0-based index indicating the order of the utterances in the conversation.
- `speaker`: Either USER or ASSISTANT, indicating which role generated this utterance.
- `text`: The raw text of the utterance. In case of self dialogs (one_person_dialogs), this is written by the crowdsourced worker. In case of the WOz dialogs, 'ASSISTANT' turns are written and 'USER' turns are transcribed from the spoken recordings of crowdsourced workers.
- `segments`: A list of various text spans with semantic annotations.
- `apis`: An array of API invocations made during the utterance.

Each API has the following structure:

- `name`: The name of the API invoked (e.g. find_movies).
- `index`: The index of the parent utterance.
- `args`: A `list` of `dict` with keys `arg_name` and `arg_value` which represent the name of the argument and the value for the argument respectively. 
- `response`: A `list` of `dict`s with keys `response_name` and `response_value` which represent the name of the response and the value for the response respectively. 

Each segment has the following fields:

- `start_index`: The position of the start of the annotation in the utterance text.
- `end_index`: The position of the end of the annotation in the utterance text.
- `text`: The raw text that has been annotated.
- `annotations`: A list of annotation details for this segment.

Each annotation has a single field:

- `name`: The annotation name.



### Data Splits

There are no deafults splits for all the config. The below table lists the number of examples in each config.

|                   | Train  |
|-------------------|--------|
| n_instances       | 23757  |


## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The dataset is licensed under `Creative Commons Attribution 4.0 License`

### Citation Information

[More Information Needed]
```
@inproceedings{48484,
title	= {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},
author	= {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},
year	= {2019}
}
```
### Contributions

Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset.