File size: 12,353 Bytes
1af3fce
 
 
 
 
f684cdd
1af3fce
f684cdd
 
1af3fce
 
 
272399d
 
1af3fce
 
 
e75260a
 
1af3fce
 
aa4b5c9
3765d6a
 
 
 
 
 
 
c2c03a2
 
 
 
 
 
 
 
 
 
 
 
 
3765d6a
c2c03a2
3765d6a
 
c2c03a2
 
 
 
 
 
 
 
 
 
 
 
972b5e8
c2c03a2
972b5e8
 
c2c03a2
 
 
 
 
 
 
 
 
 
 
 
3d703fa
c2c03a2
3d703fa
 
c2c03a2
 
 
 
 
 
 
 
 
 
 
 
4e8958e
c2c03a2
4e8958e
 
c2c03a2
 
 
 
 
 
 
 
 
 
 
 
69c76bd
c2c03a2
69c76bd
 
c2c03a2
 
 
 
 
 
 
 
 
 
 
 
b282d2b
c2c03a2
b282d2b
 
3765d6a
 
 
 
 
972b5e8
 
 
 
3d703fa
 
 
 
4e8958e
 
 
 
69c76bd
 
 
 
b282d2b
 
 
 
1af3fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c03a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
---
annotations_creators:
- found
language_creators:
- found
language:
- code
license:
- c-uda
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- slot-filling
pretty_name: CodeXGlueCcClozeTestingAll
config_names:
- go
- java
- javascript
- php
- python
- ruby
dataset_info:
- config_name: go
  features:
  - name: id
    dtype: int32
  - name: idx
    dtype: string
  - name: nl_tokens
    sequence: string
  - name: pl_tokens
    sequence: string
  splits:
  - name: train
    num_bytes: 22409705
    num_examples: 25282
  download_size: 7317578
  dataset_size: 22409705
- config_name: java
  features:
  - name: id
    dtype: int32
  - name: idx
    dtype: string
  - name: nl_tokens
    sequence: string
  - name: pl_tokens
    sequence: string
  splits:
  - name: train
    num_bytes: 40392865
    num_examples: 40492
  download_size: 13540081
  dataset_size: 40392865
- config_name: javascript
  features:
  - name: id
    dtype: int32
  - name: idx
    dtype: string
  - name: nl_tokens
    sequence: string
  - name: pl_tokens
    sequence: string
  splits:
  - name: train
    num_bytes: 16090142
    num_examples: 13837
  download_size: 5380631
  dataset_size: 16090142
- config_name: php
  features:
  - name: id
    dtype: int32
  - name: idx
    dtype: string
  - name: nl_tokens
    sequence: string
  - name: pl_tokens
    sequence: string
  splits:
  - name: train
    num_bytes: 51328868
    num_examples: 51930
  download_size: 16553882
  dataset_size: 51328868
- config_name: python
  features:
  - name: id
    dtype: int32
  - name: idx
    dtype: string
  - name: nl_tokens
    sequence: string
  - name: pl_tokens
    sequence: string
  splits:
  - name: train
    num_bytes: 40631113
    num_examples: 40137
  download_size: 15081309
  dataset_size: 40631113
- config_name: ruby
  features:
  - name: id
    dtype: int32
  - name: idx
    dtype: string
  - name: nl_tokens
    sequence: string
  - name: pl_tokens
    sequence: string
  splits:
  - name: train
    num_bytes: 3454884
    num_examples: 4437
  download_size: 1301455
  dataset_size: 3454884
configs:
- config_name: go
  data_files:
  - split: train
    path: go/train-*
- config_name: java
  data_files:
  - split: train
    path: java/train-*
- config_name: javascript
  data_files:
  - split: train
    path: javascript/train-*
- config_name: php
  data_files:
  - split: train
    path: php/train-*
- config_name: python
  data_files:
  - split: train
    path: python/train-*
- config_name: ruby
  data_files:
  - split: train
    path: ruby/train-*
---
# Dataset Card for "code_x_glue_cc_cloze_testing_all"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits-sample-size)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all

### Dataset Summary

CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all

Cloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.
Here we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.
The only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.

### Supported Tasks and Leaderboards

- `slot-filling`: The dataset can be used to train a model for predicting the missing token from a piece of code, similar to the Cloze test.

### Languages

- Go **programming** language
- Java **programming** language
- Javascript **programming** language
- PHP **programming** language
- Python **programming** language
- Ruby **programming** language

## Dataset Structure

### Data Instances

#### go

An example of 'train' looks as follows.
```
{
    "id": 0, 
    "idx": "all-1", 
    "nl_tokens": ["MarshalJSON", "supports", "json", ".", "Marshaler", "interface"], 
    "pl_tokens": ["func", "(", "v", "ContextRealtimeData", ")", "MarshalJSON", "(", ")", "(", "[", "]", "byte", ",", "error", ")", "{", "w", ":=", "jwriter", ".", "<mask>", "{", "}", "\n", "easyjsonC5a4559bEncodeGithubComChromedpCdprotoWebaudio7", "(", "&", "w", ",", "v", ")", "\n", "return", "w", ".", "Buffer", ".", "BuildBytes", "(", ")", ",", "w", ".", "Error", "\n", "}"]
}
```

#### java

An example of 'train' looks as follows.
```
{
    "id": 0, 
    "idx": "all-1", 
    "nl_tokens": ["/", "*", "(", "non", "-", "Javadoc", ")"], 
    "pl_tokens": ["@", "Override", "public", "int", "peekBit", "(", ")", "throws", "AACException", "{", "int", "ret", ";", "if", "(", "bitsCached", ">", "0", ")", "{", "ret", "=", "(", "cache", ">>", "(", "bitsCached", "-", "1", ")", ")", "&", "1", ";", "}", "else", "{", "final", "int", "word", "=", "readCache", "(", "true", ")", ";", "ret", "=", "(", "<mask>", ">>", "WORD_BITS", "-", "1", ")", "&", "1", ";", "}", "return", "ret", ";", "}"]
}
```

#### javascript

An example of 'train' looks as follows.
```
{
    "id": 0, 
    "idx": "all-1", 
    "nl_tokens": ["Cast", "query", "params", "according", "to", "type"], 
    "pl_tokens": ["function", "castQueryParams", "(", "relId", ",", "data", ",", "{", "relationships", "}", ")", "{", "const", "relationship", "=", "relationships", "[", "relId", "]", "if", "(", "!", "relationship", ".", "query", ")", "{", "return", "{", "}", "}", "return", "Object", ".", "keys", "(", "relationship", ".", "query", ")", ".", "reduce", "(", "(", "params", ",", "<mask>", ")", "=>", "{", "const", "value", "=", "getField", "(", "data", ",", "relationship", ".", "query", "[", "key", "]", ")", "if", "(", "value", "===", "undefined", ")", "{", "throw", "new", "TypeError", "(", "'Missing value for query param'", ")", "}", "return", "{", "...", "params", ",", "[", "key", "]", ":", "value", "}", "}", ",", "{", "}", ")", "}"]
}
```

#### php

An example of 'train' looks as follows.
```
{
    "id": 0, 
    "idx": "all-1", 
    "nl_tokens": ["Get", "choices", "."], 
    "pl_tokens": ["protected", "<mask>", "getChoices", "(", "FormFieldTranslation", "$", "translation", ")", "{", "$", "choices", "=", "preg_split", "(", "'/\\r\\n|\\r|\\n/'", ",", "$", "translation", "->", "getOption", "(", "'choices'", ")", ",", "-", "1", ",", "PREG_SPLIT_NO_EMPTY", ")", ";", "return", "array_combine", "(", "$", "choices", ",", "$", "choices", ")", ";", "}"]
}
```

#### python

An example of 'train' looks as follows.
```
{
    "id": 0, 
    "idx": "all-1", 
    "nl_tokens": ["Post", "a", "review"], 
    "pl_tokens": ["def", "post_review", "(", "session", ",", "review", ")", ":", "# POST /api/projects/0.1/reviews/", "<mask>", "=", "make_post_request", "(", "session", ",", "'reviews'", ",", "json_data", "=", "review", ")", "json_data", "=", "response", ".", "json", "(", ")", "if", "response", ".", "status_code", "==", "200", ":", "return", "json_data", "[", "'status'", "]", "else", ":", "raise", "ReviewNotPostedException", "(", "message", "=", "json_data", "[", "'message'", "]", ",", "error_code", "=", "json_data", "[", "'error_code'", "]", ",", "request_id", "=", "json_data", "[", "'request_id'", "]", ")"]
}
```

#### ruby

An example of 'train' looks as follows.
```
{
    "id": 0, 
    "idx": "all-1", 
    "nl_tokens": ["By", "default", "taskers", "don", "t", "see", "the", "flor", "variables", "in", "the", "execution", ".", "If", "include_vars", "or", "exclude_vars", "is", "present", "in", "the", "configuration", "of", "the", "tasker", "some", "or", "all", "of", "the", "variables", "are", "passed", "."], 
    "pl_tokens": ["def", "gather_vars", "(", "executor", ",", "tconf", ",", "message", ")", "# try to return before a potentially costly call to executor.vars(nid)", "return", "nil", "if", "(", "tconf", ".", "keys", "&", "%w[", "include_vars", "exclude_vars", "]", ")", ".", "empty?", "# default behaviour, don't pass variables to taskers", "iv", "=", "expand_filter", "(", "tconf", "[", "'include_vars'", "]", ")", "return", "nil", "if", "iv", "==", "false", "ev", "=", "expand_filter", "(", "tconf", "[", "'exclude_vars'", "]", ")", "return", "{", "}", "if", "ev", "==", "true", "vars", "=", "executor", ".", "vars", "(", "message", "[", "'nid'", "]", ")", "return", "vars", "if", "iv", "==", "true", "vars", "=", "vars", ".", "select", "{", "|", "k", ",", "v", "|", "var_match", "(", "k", ",", "iv", ")", "}", "if", "<mask>", "vars", "=", "vars", ".", "reject", "{", "|", "k", ",", "v", "|", "var_match", "(", "k", ",", "ev", ")", "}", "if", "ev", "vars", "end"]
}
```

### Data Fields

In the following each data field in go is explained for each config. The data fields are the same among all splits.

#### go, java, javascript, php, python, ruby

|field name|      type      |         description          |
|----------|----------------|------------------------------|
|id        |int32           | Index of the sample          |
|idx       |string          | Original index in the dataset|
|nl_tokens |Sequence[string]| Natural language tokens      |
|pl_tokens |Sequence[string]| Programming language tokens  |

### Data Splits

|   name   |train|
|----------|----:|
|go        |25282|
|java      |40492|
|javascript|13837|
|php       |51930|
|python    |40137|
|ruby      | 4437|

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

Data from CodeSearchNet Challenge dataset.
[More Information Needed]

#### Who are the source language producers?

Software Engineering developers.

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

https://github.com/microsoft, https://github.com/madlag

### Licensing Information

Computational Use of Data Agreement (C-UDA) License.

### Citation Information

```
@article{CodeXGLUE,
  title={CodeXGLUE: An Open Challenge for Code Intelligence},
  journal={arXiv},
  year={2020},
}
@article{feng2020codebert,
  title={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},
  author={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},
  journal={arXiv preprint arXiv:2002.08155},
  year={2020}
}
@article{husain2019codesearchnet,
  title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},
  author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
  journal={arXiv preprint arXiv:1909.09436},
  year={2019}
}
```

### Contributions

Thanks to @madlag (and partly also @ncoop57) for adding this dataset.