Datasets:
Tasks:
Audio Classification
Sub-tasks:
keyword-spotting
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
File size: 9,320 Bytes
c68e203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
---
annotations_creators:
- other
language_creators:
- crowdsourced
languages:
- en
licenses:
- cc-by-4-0
multilinguality:
- monolingual
pretty_name: SpeechCommands
size_categories:
v0-01:
- 10K<n<100K
v0-02:
- 100K<n<1M
source_datasets:
- original
task_categories:
- speech-processing
task_ids:
- other-other-keyword-spotting
---
# Dataset Card for SpeechCommands
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.tensorflow.org/datasets/catalog/speech_commands
- **Repository:** [More Information Needed]
- **Paper:** [Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition](https://arxiv.org/pdf/1804.03209.pdf)
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** Pete Warden, [email protected]
### Dataset Summary
This is a set of one-second .wav audio files, each containing a single spoken
English word or background noise. These words are from a small set of commands, and are spoken by a
variety of different speakers. This data set is designed to help train simple
machine learning models. It is covered in more detail at [https://arxiv.org/abs/1804.03209](https://arxiv.org/abs/1804.03209).
Version 0.01 of the data set (configuration `"v0.01"`) was released on August 3rd 2017 and contains
64,727 audio files.
Version 0.02 of the data set (configuration `"v0.02"`) was released on April 11th 2018 and
contains 105,829 audio files.
### Supported Tasks and Leaderboards
* `keyword-spotting`: the dataset can be used to train and evaluate keyword
spotting systems. The task is to detect preregistered keywords by classifying utterances
into a predefined set of words. The task is usually performed on-device for the
fast response time. Thus, accuracy, model size, and inference time are all crucial.
### Languages
The language data in SpeechCommands is in English (BCP-47 `en`).
## Dataset Structure
### Data Instances
Example of a core word (`"label"` is a word, `"is_unknown"` is `False`):
```python
{
"file": "no/7846fd85_nohash_0.wav",
"audio": {
"path": "no/7846fd85_nohash_0.wav",
"array": array([ -0.00021362, -0.00027466, -0.00036621, ..., 0.00079346,
0.00091553, 0.00079346]),
"sampling_rate": 16000
},
"label": 1, # "no"
"is_unknown": False,
"speaker_id": "7846fd85",
"utterance_id": 0
}
```
Example of an auxiliary word (`"label"` is a word, `"is_unknown"` is `True`)
```python
{
"file": "tree/8b775397_nohash_0.wav",
"audio": {
"path": "tree/8b775397_nohash_0.wav",
"array": array([ -0.00854492, -0.01339722, -0.02026367, ..., 0.00274658,
0.00335693, 0.0005188]),
"sampling_rate": 16000
},
"label": 28, # "tree"
"is_unknown": True,
"speaker_id": "1b88bf70",
"utterance_id": 0
}
```
Example of background noise (`_silence_`) class:
```python
{
"file": "_silence_/doing_the_dishes.wav",
"audio": {
"path": "_silence_/doing_the_dishes.wav",
"array": array([ 0. , 0. , 0. , ..., -0.00592041,
-0.00405884, -0.00253296]),
"sampling_rate": 16000
},
"label": 30, # "_silence_"
"is_unknown": False,
"speaker_id": "None",
"utterance_id": 0 # doesn't make sense here
}
```
### Data Fields
* `file`: relative audio filename inside the original archive.
* `audio`: dictionary containing a relative audio filename,
a decoded audio array, and the sampling rate. Note that when accessing
the audio column: `dataset[0]["audio"]` the audio is automatically decoded
and resampled to `dataset.features["audio"].sampling_rate`.
Decoding and resampling of a large number of audios might take a significant
amount of time. Thus, it is important to first query the sample index before
the `"audio"` column, i.e. `dataset[0]["audio"]` should always be preferred
over `dataset["audio"][0]`.
* `label`: either word pronounced in an audio sample or background noise (`_silence_`) class.
Note that it's an integer value corresponding to the class name.
* `is_unknown`: if a word is auxiliary. Equals to `False` if a word is a core word or `_silence_`,
`True` if a word is an auxiliary word.
* `speaker_id`: unique id of a speaker. Equals to `None` if label is `_silence_`.
* `utterance_id`: incremental id of a word utterance within the same speaker.
### Data Splits
The dataset has two versions (= configurations): `"v0.01"` and `"v0.02"`. `"v0.02"`
contains more words (see section [Source Data](#source-data) for more details).
| | train | validation | test |
|----- |------:|-----------:|-----:|
| v0.01 | 51093 | 6799 | 3081 |
| v0.02 | 84848 | 9982 | 4890 |
Note that in train and validation sets examples of `_silence_` class are longer than 1 second.
You can use the following code to sample 1-second examples from the longer ones:
```python
def sample_noise(example):
# Use this function to extract random 1 sec slices of each _silence_ utterance,
# e.g. inside `torch.utils.data.Dataset.__getitem__()`
from random import randint
if example["label"] == "_silence_":
random_offset = randint(0, len(example["speech"]) - example["sample_rate"] - 1)
example["speech"] = example["speech"][random_offset : random_offset + example["sample_rate"]]
return example
```
## Dataset Creation
### Curation Rationale
The primary goal of the dataset is to provide a way to build and test small
models that can detect a single word from a set of target words and differentiate it
from background noise or unrelated speech with as few false positives as possible.
### Source Data
#### Initial Data Collection and Normalization
The audio files were collected using crowdsourcing, see
[aiyprojects.withgoogle.com/open_speech_recording](https://github.com/petewarden/extract_loudest_section)
for some of the open source audio collection code that was used. The goal was to gather examples of
people speaking single-word commands, rather than conversational sentences, so
they were prompted for individual words over the course of a five minute
session.
In version 0.01 thirty different words were recoded: "Yes", "No", "Up", "Down", "Left",
"Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine",
"Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow".
In version 0.02 more words were added: "Backward", "Forward", "Follow", "Learn", "Visual".
In both versions, ten of them are used as commands by convention: "Yes", "No", "Up", "Down", "Left",
"Right", "On", "Off", "Stop", "Go". Other words are considered to be auxiliary (in current implementation
it is marked by `True` value of `"is_unknown"` feature). Their function is to teach a model to distinguish core words
from unrecognized ones.
The `_silence_` label contains a set of longer audio clips that are either recordings or
a mathematical simulation of noise.
#### Who are the source language producers?
The audio files were collected using crowdsourcing.
### Annotations
#### Annotation process
Labels are the list of words prepared in advances.
Speakers were prompted for individual words over the course of a five minute
session.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Creative Commons BY 4.0 License.
### Citation Information
```
@article{speechcommandsv2,
author = { {Warden}, P.},
title = "{Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1804.03209},
primaryClass = "cs.CL",
keywords = {Computer Science - Computation and Language, Computer Science - Human-Computer Interaction},
year = 2018,
month = apr,
url = {https://arxiv.org/abs/1804.03209},
}
```
### Contributions
Thanks to [@polinaeterna](https://github.com/polinaeterna) for adding this dataset.
|