parquet-converter commited on
Commit
ac24588
·
1 Parent(s): 930c9cf

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,51 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.lz4 filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.npy filter=lfs diff=lfs merge=lfs -text
14
- *.npz filter=lfs diff=lfs merge=lfs -text
15
- *.onnx filter=lfs diff=lfs merge=lfs -text
16
- *.ot filter=lfs diff=lfs merge=lfs -text
17
- *.parquet filter=lfs diff=lfs merge=lfs -text
18
- *.pb filter=lfs diff=lfs merge=lfs -text
19
- *.pickle filter=lfs diff=lfs merge=lfs -text
20
- *.pkl filter=lfs diff=lfs merge=lfs -text
21
- *.pt filter=lfs diff=lfs merge=lfs -text
22
- *.pth filter=lfs diff=lfs merge=lfs -text
23
- *.rar filter=lfs diff=lfs merge=lfs -text
24
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
- *.tar.* filter=lfs diff=lfs merge=lfs -text
26
- *.tflite filter=lfs diff=lfs merge=lfs -text
27
- *.tgz filter=lfs diff=lfs merge=lfs -text
28
- *.wasm filter=lfs diff=lfs merge=lfs -text
29
- *.xz filter=lfs diff=lfs merge=lfs -text
30
- *.zip filter=lfs diff=lfs merge=lfs -text
31
- *.zst filter=lfs diff=lfs merge=lfs -text
32
- *tfevents* filter=lfs diff=lfs merge=lfs -text
33
- # Audio files - uncompressed
34
- *.pcm filter=lfs diff=lfs merge=lfs -text
35
- *.sam filter=lfs diff=lfs merge=lfs -text
36
- *.raw filter=lfs diff=lfs merge=lfs -text
37
- # Audio files - compressed
38
- *.aac filter=lfs diff=lfs merge=lfs -text
39
- *.flac filter=lfs diff=lfs merge=lfs -text
40
- *.mp3 filter=lfs diff=lfs merge=lfs -text
41
- *.ogg filter=lfs diff=lfs merge=lfs -text
42
- *.wav filter=lfs diff=lfs merge=lfs -text
43
- # Image files - uncompressed
44
- *.bmp filter=lfs diff=lfs merge=lfs -text
45
- *.gif filter=lfs diff=lfs merge=lfs -text
46
- *.png filter=lfs diff=lfs merge=lfs -text
47
- *.tiff filter=lfs diff=lfs merge=lfs -text
48
- # Image files - compressed
49
- *.jpg filter=lfs diff=lfs merge=lfs -text
50
- *.jpeg filter=lfs diff=lfs merge=lfs -text
51
- *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,109 +0,0 @@
1
- ---
2
- licence: unknown
3
- ---
4
-
5
- # Dataset Card for uracil
6
-
7
- ## Table of Contents
8
- - [Table of Contents](#table-of-contents)
9
- - [Dataset Description](#dataset-description)
10
- - [Dataset Summary](#dataset-summary)
11
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
12
- - [External Use](#external-use)
13
- - [PyGeometric](#pygeometric)
14
- - [Dataset Structure](#dataset-structure)
15
- - [Data Properties](#data-properties)
16
- - [Data Fields](#data-fields)
17
- - [Data Splits](#data-splits)
18
- - [Additional Information](#additional-information)
19
- - [Licensing Information](#licensing-information)
20
- - [Citation Information](#citation-information)
21
- - [Contributions](#contributions)
22
-
23
- ## Dataset Description
24
- - **[Homepage](http://www.sgdml.org/#datasets)**
25
- - **Paper:**: (see citation)
26
-
27
-
28
- ### Dataset Summary
29
- The `uracil` dataset is a molecular dynamics (MD) dataset. The total energy and force labels for each dataset were computed using the PBE+vdW-TS electronic structure method. All geometries are in Angstrom, energies and forces are given in kcal/mol and kcal/mol/A respectively.
30
-
31
-
32
- ### Supported Tasks and Leaderboards
33
- `uracil` should be used for organic molecular property prediction, a regression task on 1 property. The score used is Mean absolute errors (in meV) for energy prediction.
34
-
35
-
36
- ## External Use
37
- ### PyGeometric
38
- To load in PyGeometric, do the following:
39
-
40
- ```python
41
- from datasets import load_dataset
42
-
43
- from torch_geometric.data import Data
44
- from torch_geometric.loader import DataLoader
45
-
46
- dataset_hf = load_dataset("graphs-datasets/<mydataset>")
47
- # For the train set (replace by valid or test as needed)
48
- dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
49
- dataset_pg = DataLoader(dataset_pg_list)
50
- ```
51
-
52
- ## Dataset Structure
53
-
54
- ### Data Properties
55
- | property | value |
56
- |---|---|
57
- | scale | big |
58
- | #graphs | 133769 |
59
- | average #nodes | 12.0 |
60
- | average #edges | 128.88676085818943 |
61
-
62
- ### Data Fields
63
-
64
- Each row of a given file is a graph, with:
65
- - `node_feat` (list: #nodes x #node-features): nodes
66
- - `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
67
- - `edge_attr` (list: #edges x #edge-features): for the aforementioned edges, contains their features
68
- - `y` (list: #labels): contains the number of labels available to predict
69
- - `num_nodes` (int): number of nodes of the graph
70
-
71
- ### Data Splits
72
-
73
- This data is not split, and should be used with cross validation. It comes from the PyGeometric version of the dataset.
74
-
75
- ## Additional Information
76
-
77
- ### Licensing Information
78
- The dataset has been released under license unknown.
79
-
80
- ### Citation Information
81
- ```
82
- @inproceedings{Morris+2020,
83
- title={TUDataset: A collection of benchmark datasets for learning with graphs},
84
- author={Christopher Morris and Nils M. Kriege and Franka Bause and Kristian Kersting and Petra Mutzel and Marion Neumann},
85
- booktitle={ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020)},
86
- archivePrefix={arXiv},
87
- eprint={2007.08663},
88
- url={www.graphlearning.io},
89
- year={2020}
90
- }
91
- ```
92
-
93
- ```
94
-
95
- @article{Chmiela_2017,
96
- doi = {10.1126/sciadv.1603015},
97
- url = {https://doi.org/10.1126%2Fsciadv.1603015},
98
- year = 2017,
99
- month = {may},
100
- publisher = {American Association for the Advancement of Science ({AAAS})},
101
- volume = {3},
102
- number = {5},
103
- author = {Stefan Chmiela and Alexandre Tkatchenko and Huziel E. Sauceda and Igor Poltavsky and Kristof T. Schütt and Klaus-Robert Müller},
104
- title = {Machine learning of accurate energy-conserving molecular force fields},
105
- journal = {Science Advances}
106
- }
107
-
108
-
109
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"graphs-datasets--MD17-uracil": {"description": "", "citation": "", "homepage": "", "license": "", "features": {"edge_index": {"feature": {"feature": {"dtype": "int64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "node_feat": {"feature": {"feature": {"dtype": "float64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "y": {"feature": {"dtype": "float64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "num_nodes": {"dtype": "int64", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "json", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"full": {"name": "full", "num_bytes": 338463272, "num_examples": 133770, "dataset_name": "MD17-uracil"}}, "download_checksums": null, "download_size": 1229131, "post_processing_size": null, "dataset_size": 338463272, "size_in_bytes": 339692403}}
 
 
data/full-00000-of-00001-5f918104c002e831.parquet → graphs-datasets--MD17-uracil/parquet-full.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ff822fb63320f1b68867495089d4d261d6522a647483d8f94a79330e3ec42e59
3
- size 1229131
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:560805df3a4ae648ca7f7b74e22e4607350ebbbbc70783a4dd94ec22de065a5b
3
+ size 1521708