rem
stringlengths 0
83.5k
| add
stringlengths 0
223k
| context
stringlengths 10
471k
| meta
stringlengths 120
236
|
---|---|---|---|
*F = RgX_to_FpX(*F, p); | *F = FpX_normalize(RgX_to_FpX(*F, p), p); | factmod_init(GEN *F, GEN p){ long d; if (typ(*F)!=t_POL || typ(p)!=t_INT) err(typeer,"factmod"); *F = RgX_to_FpX(*F, p); d = degpol(*F); if (d < 0) err(zeropoler,"factmod"); return d;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/0653bf4e80ffba66b9dad8b9b9bf38de88f14841/polarit1.c/clean/src/basemath/polarit1.c |
autvec_TH(int pk, GEN z, GEN v, GEN C) | autvec_TH(long pk, GEN z, GEN v, GEN C) | autvec_TH(int pk, GEN z, GEN v, GEN C){ int i, lv = lg(v); GEN s = polun[varn(C)]; for (i=1; i<lv; i++) { long y = v[i]; if (y) s = RgXQ_mul(s, RgXQ_u_pow(aut(pk,z, y), y, C), C); } return s;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/b03001ef86c74799b6280212f7a40aee0823ed89/aprcl.c/clean/src/modules/aprcl.c |
int i, lv = lg(v); | long i, lv = lg(v); | autvec_TH(int pk, GEN z, GEN v, GEN C){ int i, lv = lg(v); GEN s = polun[varn(C)]; for (i=1; i<lv; i++) { long y = v[i]; if (y) s = RgXQ_mul(s, RgXQ_u_pow(aut(pk,z, y), y, C), C); } return s;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/b03001ef86c74799b6280212f7a40aee0823ed89/aprcl.c/clean/src/modules/aprcl.c |
rtems_libio_fcntl_flags(unsigned32 fcntl_flags) | unsigned32 rtems_libio_fcntl_flags( unsigned32 fcntl_flags ) | rtems_libio_fcntl_flags(unsigned32 fcntl_flags){ unsigned32 flags = 0; unsigned32 access_modes; /* * Access mode is a small integer */ access_modes = fcntl_flags & O_ACCMODE; fcntl_flags &= ~O_ACCMODE; flags = rtems_assoc_local_by_remote(access_modes_assoc, access_modes); /* * Everything else is single bits */ flags |= rtems_assoc_local_by_remote_bitfield(status_flags_assoc, fcntl_flags); return flags;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
unsigned32 flags = 0; unsigned32 access_modes; | unsigned32 flags = 0; unsigned32 access_modes; | rtems_libio_fcntl_flags(unsigned32 fcntl_flags){ unsigned32 flags = 0; unsigned32 access_modes; /* * Access mode is a small integer */ access_modes = fcntl_flags & O_ACCMODE; fcntl_flags &= ~O_ACCMODE; flags = rtems_assoc_local_by_remote(access_modes_assoc, access_modes); /* * Everything else is single bits */ flags |= rtems_assoc_local_by_remote_bitfield(status_flags_assoc, fcntl_flags); return flags;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
/* * Access mode is a small integer */ access_modes = fcntl_flags & O_ACCMODE; fcntl_flags &= ~O_ACCMODE; flags = rtems_assoc_local_by_remote(access_modes_assoc, access_modes); | /* * Access mode is a small integer */ access_modes = fcntl_flags & O_ACCMODE; fcntl_flags &= ~O_ACCMODE; flags = rtems_assoc_local_by_remote( access_modes_assoc, access_modes ); | rtems_libio_fcntl_flags(unsigned32 fcntl_flags){ unsigned32 flags = 0; unsigned32 access_modes; /* * Access mode is a small integer */ access_modes = fcntl_flags & O_ACCMODE; fcntl_flags &= ~O_ACCMODE; flags = rtems_assoc_local_by_remote(access_modes_assoc, access_modes); /* * Everything else is single bits */ flags |= rtems_assoc_local_by_remote_bitfield(status_flags_assoc, fcntl_flags); return flags;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
/* * Everything else is single bits */ | /* * Everything else is single bits */ | rtems_libio_fcntl_flags(unsigned32 fcntl_flags){ unsigned32 flags = 0; unsigned32 access_modes; /* * Access mode is a small integer */ access_modes = fcntl_flags & O_ACCMODE; fcntl_flags &= ~O_ACCMODE; flags = rtems_assoc_local_by_remote(access_modes_assoc, access_modes); /* * Everything else is single bits */ flags |= rtems_assoc_local_by_remote_bitfield(status_flags_assoc, fcntl_flags); return flags;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
flags |= rtems_assoc_local_by_remote_bitfield(status_flags_assoc, fcntl_flags); return flags; | flags |= rtems_assoc_local_by_remote_bitfield(status_flags_assoc, fcntl_flags); return flags; | rtems_libio_fcntl_flags(unsigned32 fcntl_flags){ unsigned32 flags = 0; unsigned32 access_modes; /* * Access mode is a small integer */ access_modes = fcntl_flags & O_ACCMODE; fcntl_flags &= ~O_ACCMODE; flags = rtems_assoc_local_by_remote(access_modes_assoc, access_modes); /* * Everything else is single bits */ flags |= rtems_assoc_local_by_remote_bitfield(status_flags_assoc, fcntl_flags); return flags;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
rtems_libio_allocate(void) | rtems_libio_t *rtems_libio_allocate( void ) | rtems_libio_allocate(void){ rtems_libio_t *iop; rtems_status_code rc; rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); for (iop = rtems_libio_iops; iop <= rtems_libio_last_iop; iop++) if ((iop->flags & LIBIO_FLAGS_OPEN) == 0) { /* * Got one; create a semaphore for it */ rc = rtems_semaphore_create( RTEMS_LIBIO_IOP_SEM(iop - rtems_libio_iops), 1, RTEMS_BINARY_SEMAPHORE | RTEMS_INHERIT_PRIORITY | RTEMS_PRIORITY, RTEMS_NO_PRIORITY, &iop->sem ); if (rc != RTEMS_SUCCESSFUL) goto failed; iop->flags = LIBIO_FLAGS_OPEN; goto done; } failed: iop = 0; done: rtems_semaphore_release(rtems_libio_semaphore); return iop;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
rtems_libio_t *iop; rtems_status_code rc; | rtems_libio_t *iop; rtems_status_code rc; rtems_semaphore_obtain( rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT ); for (iop = rtems_libio_iops; iop <= rtems_libio_last_iop; iop++) if ((iop->flags & LIBIO_FLAGS_OPEN) == 0) { /* * Got an IOP -- create a semaphore for it. */ rc = rtems_semaphore_create( RTEMS_LIBIO_IOP_SEM(iop - rtems_libio_iops), 1, RTEMS_BINARY_SEMAPHORE | RTEMS_INHERIT_PRIORITY | RTEMS_PRIORITY, RTEMS_NO_PRIORITY, &iop->sem ); if ( rc != RTEMS_SUCCESSFUL ) goto failed; | rtems_libio_allocate(void){ rtems_libio_t *iop; rtems_status_code rc; rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); for (iop = rtems_libio_iops; iop <= rtems_libio_last_iop; iop++) if ((iop->flags & LIBIO_FLAGS_OPEN) == 0) { /* * Got one; create a semaphore for it */ rc = rtems_semaphore_create( RTEMS_LIBIO_IOP_SEM(iop - rtems_libio_iops), 1, RTEMS_BINARY_SEMAPHORE | RTEMS_INHERIT_PRIORITY | RTEMS_PRIORITY, RTEMS_NO_PRIORITY, &iop->sem ); if (rc != RTEMS_SUCCESSFUL) goto failed; iop->flags = LIBIO_FLAGS_OPEN; goto done; } failed: iop = 0; done: rtems_semaphore_release(rtems_libio_semaphore); return iop;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); for (iop = rtems_libio_iops; iop <= rtems_libio_last_iop; iop++) if ((iop->flags & LIBIO_FLAGS_OPEN) == 0) { /* * Got one; create a semaphore for it */ rc = rtems_semaphore_create( RTEMS_LIBIO_IOP_SEM(iop - rtems_libio_iops), 1, RTEMS_BINARY_SEMAPHORE | RTEMS_INHERIT_PRIORITY | RTEMS_PRIORITY, RTEMS_NO_PRIORITY, &iop->sem ); if (rc != RTEMS_SUCCESSFUL) goto failed; iop->flags = LIBIO_FLAGS_OPEN; goto done; } | iop->flags = LIBIO_FLAGS_OPEN; goto done; } | rtems_libio_allocate(void){ rtems_libio_t *iop; rtems_status_code rc; rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); for (iop = rtems_libio_iops; iop <= rtems_libio_last_iop; iop++) if ((iop->flags & LIBIO_FLAGS_OPEN) == 0) { /* * Got one; create a semaphore for it */ rc = rtems_semaphore_create( RTEMS_LIBIO_IOP_SEM(iop - rtems_libio_iops), 1, RTEMS_BINARY_SEMAPHORE | RTEMS_INHERIT_PRIORITY | RTEMS_PRIORITY, RTEMS_NO_PRIORITY, &iop->sem ); if (rc != RTEMS_SUCCESSFUL) goto failed; iop->flags = LIBIO_FLAGS_OPEN; goto done; } failed: iop = 0; done: rtems_semaphore_release(rtems_libio_semaphore); return iop;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
iop = 0; | iop = 0; | rtems_libio_allocate(void){ rtems_libio_t *iop; rtems_status_code rc; rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); for (iop = rtems_libio_iops; iop <= rtems_libio_last_iop; iop++) if ((iop->flags & LIBIO_FLAGS_OPEN) == 0) { /* * Got one; create a semaphore for it */ rc = rtems_semaphore_create( RTEMS_LIBIO_IOP_SEM(iop - rtems_libio_iops), 1, RTEMS_BINARY_SEMAPHORE | RTEMS_INHERIT_PRIORITY | RTEMS_PRIORITY, RTEMS_NO_PRIORITY, &iop->sem ); if (rc != RTEMS_SUCCESSFUL) goto failed; iop->flags = LIBIO_FLAGS_OPEN; goto done; } failed: iop = 0; done: rtems_semaphore_release(rtems_libio_semaphore); return iop;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
rtems_semaphore_release(rtems_libio_semaphore); return iop; | rtems_semaphore_release( rtems_libio_semaphore ); return iop; | rtems_libio_allocate(void){ rtems_libio_t *iop; rtems_status_code rc; rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); for (iop = rtems_libio_iops; iop <= rtems_libio_last_iop; iop++) if ((iop->flags & LIBIO_FLAGS_OPEN) == 0) { /* * Got one; create a semaphore for it */ rc = rtems_semaphore_create( RTEMS_LIBIO_IOP_SEM(iop - rtems_libio_iops), 1, RTEMS_BINARY_SEMAPHORE | RTEMS_INHERIT_PRIORITY | RTEMS_PRIORITY, RTEMS_NO_PRIORITY, &iop->sem ); if (rc != RTEMS_SUCCESSFUL) goto failed; iop->flags = LIBIO_FLAGS_OPEN; goto done; } failed: iop = 0; done: rtems_semaphore_release(rtems_libio_semaphore); return iop;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
rtems_libio_free(rtems_libio_t *iop) | void rtems_libio_free( rtems_libio_t *iop ) | rtems_libio_free(rtems_libio_t *iop){ rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); if (iop->sem) rtems_semaphore_delete(iop->sem); (void) memset(iop, 0, sizeof(*iop)); rtems_semaphore_release(rtems_libio_semaphore);} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); | rtems_semaphore_obtain( rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT ); | rtems_libio_free(rtems_libio_t *iop){ rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); if (iop->sem) rtems_semaphore_delete(iop->sem); (void) memset(iop, 0, sizeof(*iop)); rtems_semaphore_release(rtems_libio_semaphore);} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
if (iop->sem) rtems_semaphore_delete(iop->sem); (void) memset(iop, 0, sizeof(*iop)); | if (iop->sem) rtems_semaphore_delete(iop->sem); | rtems_libio_free(rtems_libio_t *iop){ rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); if (iop->sem) rtems_semaphore_delete(iop->sem); (void) memset(iop, 0, sizeof(*iop)); rtems_semaphore_release(rtems_libio_semaphore);} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
rtems_semaphore_release(rtems_libio_semaphore); | (void) memset(iop, 0, sizeof(*iop)); rtems_semaphore_release( rtems_libio_semaphore ); | rtems_libio_free(rtems_libio_t *iop){ rtems_semaphore_obtain(rtems_libio_semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT); if (iop->sem) rtems_semaphore_delete(iop->sem); (void) memset(iop, 0, sizeof(*iop)); rtems_semaphore_release(rtems_libio_semaphore);} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/07a3253de2c3f9bc2d96a351680ec72548dadd2d/libio.c/clean/c/src/lib/libc/libio.c |
return (*fp)(fd); | status = (*fp)(fd); rtems_libio_free(iop); return status; | __rtems_close( int fd ) { rtems_status_code rc; rtems_driver_name_t *np; rtems_libio_t *iop; rtems_libio_open_close_args_t args; if (rtems_file_descriptor_type(fd)) { int (*fp)(int fd); fp = handlers[rtems_file_descriptor_type_index(fd)].close; if (fp == NULL) { errno = EBADF; return -1; } return (*fp)(fd); } iop = rtems_libio_iop(fd); rtems_libio_check_fd(fd); np = iop->driver; args.iop = iop; args.flags = 0; args.mode = 0; rc = rtems_io_close(np->major, np->minor, (void *) &args); if (rc != RTEMS_SUCCESSFUL) return rtems_libio_errno(rc); return 0;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/78d87bd3f3ffbf31c8e3893e1054a3d47a9ee992/libio.c/buggy/cpukit/libcsupport/src/libio.c |
rtems_libio_free(iop); | __rtems_close( int fd ) { rtems_status_code rc; rtems_driver_name_t *np; rtems_libio_t *iop; rtems_libio_open_close_args_t args; if (rtems_file_descriptor_type(fd)) { int (*fp)(int fd); fp = handlers[rtems_file_descriptor_type_index(fd)].close; if (fp == NULL) { errno = EBADF; return -1; } return (*fp)(fd); } iop = rtems_libio_iop(fd); rtems_libio_check_fd(fd); np = iop->driver; args.iop = iop; args.flags = 0; args.mode = 0; rc = rtems_io_close(np->major, np->minor, (void *) &args); if (rc != RTEMS_SUCCESSFUL) return rtems_libio_errno(rc); return 0;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/78d87bd3f3ffbf31c8e3893e1054a3d47a9ee992/libio.c/buggy/cpukit/libcsupport/src/libio.c |
|
rtems_panic_in_progress++; /* disable task switches */ _Thread_Disable_dispatch(); | if (rtems_panic_in_progress++) _Thread_Disable_dispatch(); /* disable task switches */ | static int rtems_verror( unsigned32 error_flag, const char *printf_format, va_list arglist){ int local_errno = 0; int chars_written = 0; rtems_status_code status; if (error_flag & RTEMS_ERROR_PANIC) { rtems_panic_in_progress++; /* disable task switches */ _Thread_Disable_dispatch(); /* don't aggravate things */ if (rtems_panic_in_progress > 2) return 0; } (void) fflush(stdout); /* in case stdout/stderr same */ status = error_flag & ~RTEMS_ERROR_MASK; if (error_flag & RTEMS_ERROR_ERRNO) /* include errno? */ local_errno = errno; if (_System_state_Is_multiprocessing) fprintf(stderr, "[%d] ", _Configuration_MP_table->node); if (rtems_progname && *rtems_progname) chars_written += fprintf(stderr, "%s: ", rtems_progname); chars_written += vfprintf(stderr, printf_format, arglist); if (status) chars_written += fprintf(stderr, " (status: %s)", rtems_status_text(status)); if (local_errno) { if ((local_errno > 0) && *strerror(local_errno)) chars_written += fprintf(stderr, " (errno: %s)", strerror(local_errno)); else chars_written += fprintf(stderr, " (unknown errno=%d)", local_errno); } chars_written += fprintf(stderr, "\n"); (void) fflush(stderr); if (error_flag & (RTEMS_ERROR_PANIC | RTEMS_ERROR_ABORT)) { if (error_flag & RTEMS_ERROR_PANIC) { rtems_error(0, "fatal error, exiting"); _exit(local_errno); } else { rtems_error(0, "fatal error, aborting"); abort(); } } return chars_written;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/85734b3c8f00abe81af80bd0a7e00874d6635104/error.c/buggy/c/src/libmisc/error/error.c |
struct iovec iov[16]; apr_size_t nvec, nbytes; | struct iovec iov[4]; apr_size_t nbytes; | static void serialize_data(serf_bucket_t *bucket){ request_context_t *ctx = bucket->data; serf_bucket_t *new_bucket; const char *new_data; struct iovec iov[16]; apr_size_t nvec, nbytes; /* Serialize the request-line and headers into one mother string, * and wrap a bucket around it. */ iov[0].iov_base = (char*)ctx->method; iov[0].iov_len = strlen(ctx->method); iov[1].iov_base = " "; iov[1].iov_len = sizeof(" ") - 1; iov[2].iov_base = (char*)ctx->uri; iov[2].iov_len = strlen(ctx->uri); iov[3].iov_base = " HTTP/1.1\r\n"; iov[3].iov_len = sizeof(" HTTP/1.1\r\n") - 1; nvec = 4; if (bucket->metadata) { apr_hash_index_t *hi; apr_pool_t *p; const void *hash_ptr; apr_hash_t *hash; /* Okay, we might have headers. */ serf_bucket_get_metadata(bucket, SERF_REQUEST_HEADERS, 0, &hash_ptr); if (hash_ptr) { hash = (apr_hash_t*)hash_ptr; /* Check to see if we have enough free IO vecs to handle this. */ if ((apr_hash_count(hash) * 3) > 16 - nvec) { /* XXX: Handle me. */ abort(); } p = serf_bucket_allocator_get_pool(bucket->allocator); for (hi = apr_hash_first(p, hash); hi; hi = apr_hash_next(hi)) { const void *key; void *val; apr_ssize_t key_len; apr_hash_this(hi, &key, &key_len, &val); iov[nvec].iov_base = (char*)key; iov[nvec++].iov_len = key_len; iov[nvec].iov_base = ": "; iov[nvec++].iov_len = sizeof(": ") - 1; iov[nvec].iov_base = val; iov[nvec++].iov_len = strlen((char*)val); iov[nvec].iov_base = "\r\n"; iov[nvec++].iov_len = sizeof("\r\n") - 1; } } } iov[nvec].iov_base = "\r\n"; iov[nvec++].iov_len = sizeof("\r\n") - 1; /* ### pool allocation! */ new_data = apr_pstrcatv(serf_bucket_allocator_get_pool(bucket->allocator), iov, nvec, &nbytes); /* Create a new bucket for this string. A free function isn't needed * since the string is residing in a pool. */ new_bucket = SERF_BUCKET_SIMPLE_STRING_LEN(new_data, nbytes, bucket->allocator); /* Build up the new bucket structure. * * Note that self needs to become an aggregate bucket so that a * pointer to self still represents the "right" data. */ serf_bucket_aggregate_become(bucket); /* Insert the two buckets. */ serf_bucket_aggregate_append(bucket, new_bucket); if (ctx->body != NULL) { serf_bucket_aggregate_append(bucket, ctx->body); } /* Our private context is no longer needed, and is not referred to by * any existing bucket. Toss it. */ serf_bucket_mem_free(bucket->allocator, ctx);} | 1874 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1874/2ca954891a4128162d15a2813f1ade79299fdbf4/request_buckets.c/buggy/buckets/request_buckets.c |
nvec = 4; if (bucket->metadata) { apr_hash_index_t *hi; apr_pool_t *p; const void *hash_ptr; apr_hash_t *hash; /* Okay, we might have headers. */ serf_bucket_get_metadata(bucket, SERF_REQUEST_HEADERS, 0, &hash_ptr); if (hash_ptr) { hash = (apr_hash_t*)hash_ptr; /* Check to see if we have enough free IO vecs to handle this. */ if ((apr_hash_count(hash) * 3) > 16 - nvec) { /* XXX: Handle me. */ abort(); } p = serf_bucket_allocator_get_pool(bucket->allocator); for (hi = apr_hash_first(p, hash); hi; hi = apr_hash_next(hi)) { const void *key; void *val; apr_ssize_t key_len; apr_hash_this(hi, &key, &key_len, &val); iov[nvec].iov_base = (char*)key; iov[nvec++].iov_len = key_len; iov[nvec].iov_base = ": "; iov[nvec++].iov_len = sizeof(": ") - 1; iov[nvec].iov_base = val; iov[nvec++].iov_len = strlen((char*)val); iov[nvec].iov_base = "\r\n"; iov[nvec++].iov_len = sizeof("\r\n") - 1; } } } iov[nvec].iov_base = "\r\n"; iov[nvec++].iov_len = sizeof("\r\n") - 1; | static void serialize_data(serf_bucket_t *bucket){ request_context_t *ctx = bucket->data; serf_bucket_t *new_bucket; const char *new_data; struct iovec iov[16]; apr_size_t nvec, nbytes; /* Serialize the request-line and headers into one mother string, * and wrap a bucket around it. */ iov[0].iov_base = (char*)ctx->method; iov[0].iov_len = strlen(ctx->method); iov[1].iov_base = " "; iov[1].iov_len = sizeof(" ") - 1; iov[2].iov_base = (char*)ctx->uri; iov[2].iov_len = strlen(ctx->uri); iov[3].iov_base = " HTTP/1.1\r\n"; iov[3].iov_len = sizeof(" HTTP/1.1\r\n") - 1; nvec = 4; if (bucket->metadata) { apr_hash_index_t *hi; apr_pool_t *p; const void *hash_ptr; apr_hash_t *hash; /* Okay, we might have headers. */ serf_bucket_get_metadata(bucket, SERF_REQUEST_HEADERS, 0, &hash_ptr); if (hash_ptr) { hash = (apr_hash_t*)hash_ptr; /* Check to see if we have enough free IO vecs to handle this. */ if ((apr_hash_count(hash) * 3) > 16 - nvec) { /* XXX: Handle me. */ abort(); } p = serf_bucket_allocator_get_pool(bucket->allocator); for (hi = apr_hash_first(p, hash); hi; hi = apr_hash_next(hi)) { const void *key; void *val; apr_ssize_t key_len; apr_hash_this(hi, &key, &key_len, &val); iov[nvec].iov_base = (char*)key; iov[nvec++].iov_len = key_len; iov[nvec].iov_base = ": "; iov[nvec++].iov_len = sizeof(": ") - 1; iov[nvec].iov_base = val; iov[nvec++].iov_len = strlen((char*)val); iov[nvec].iov_base = "\r\n"; iov[nvec++].iov_len = sizeof("\r\n") - 1; } } } iov[nvec].iov_base = "\r\n"; iov[nvec++].iov_len = sizeof("\r\n") - 1; /* ### pool allocation! */ new_data = apr_pstrcatv(serf_bucket_allocator_get_pool(bucket->allocator), iov, nvec, &nbytes); /* Create a new bucket for this string. A free function isn't needed * since the string is residing in a pool. */ new_bucket = SERF_BUCKET_SIMPLE_STRING_LEN(new_data, nbytes, bucket->allocator); /* Build up the new bucket structure. * * Note that self needs to become an aggregate bucket so that a * pointer to self still represents the "right" data. */ serf_bucket_aggregate_become(bucket); /* Insert the two buckets. */ serf_bucket_aggregate_append(bucket, new_bucket); if (ctx->body != NULL) { serf_bucket_aggregate_append(bucket, ctx->body); } /* Our private context is no longer needed, and is not referred to by * any existing bucket. Toss it. */ serf_bucket_mem_free(bucket->allocator, ctx);} | 1874 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1874/2ca954891a4128162d15a2813f1ade79299fdbf4/request_buckets.c/buggy/buckets/request_buckets.c |
|
iov, nvec, &nbytes); | iov, 4, &nbytes); | static void serialize_data(serf_bucket_t *bucket){ request_context_t *ctx = bucket->data; serf_bucket_t *new_bucket; const char *new_data; struct iovec iov[16]; apr_size_t nvec, nbytes; /* Serialize the request-line and headers into one mother string, * and wrap a bucket around it. */ iov[0].iov_base = (char*)ctx->method; iov[0].iov_len = strlen(ctx->method); iov[1].iov_base = " "; iov[1].iov_len = sizeof(" ") - 1; iov[2].iov_base = (char*)ctx->uri; iov[2].iov_len = strlen(ctx->uri); iov[3].iov_base = " HTTP/1.1\r\n"; iov[3].iov_len = sizeof(" HTTP/1.1\r\n") - 1; nvec = 4; if (bucket->metadata) { apr_hash_index_t *hi; apr_pool_t *p; const void *hash_ptr; apr_hash_t *hash; /* Okay, we might have headers. */ serf_bucket_get_metadata(bucket, SERF_REQUEST_HEADERS, 0, &hash_ptr); if (hash_ptr) { hash = (apr_hash_t*)hash_ptr; /* Check to see if we have enough free IO vecs to handle this. */ if ((apr_hash_count(hash) * 3) > 16 - nvec) { /* XXX: Handle me. */ abort(); } p = serf_bucket_allocator_get_pool(bucket->allocator); for (hi = apr_hash_first(p, hash); hi; hi = apr_hash_next(hi)) { const void *key; void *val; apr_ssize_t key_len; apr_hash_this(hi, &key, &key_len, &val); iov[nvec].iov_base = (char*)key; iov[nvec++].iov_len = key_len; iov[nvec].iov_base = ": "; iov[nvec++].iov_len = sizeof(": ") - 1; iov[nvec].iov_base = val; iov[nvec++].iov_len = strlen((char*)val); iov[nvec].iov_base = "\r\n"; iov[nvec++].iov_len = sizeof("\r\n") - 1; } } } iov[nvec].iov_base = "\r\n"; iov[nvec++].iov_len = sizeof("\r\n") - 1; /* ### pool allocation! */ new_data = apr_pstrcatv(serf_bucket_allocator_get_pool(bucket->allocator), iov, nvec, &nbytes); /* Create a new bucket for this string. A free function isn't needed * since the string is residing in a pool. */ new_bucket = SERF_BUCKET_SIMPLE_STRING_LEN(new_data, nbytes, bucket->allocator); /* Build up the new bucket structure. * * Note that self needs to become an aggregate bucket so that a * pointer to self still represents the "right" data. */ serf_bucket_aggregate_become(bucket); /* Insert the two buckets. */ serf_bucket_aggregate_append(bucket, new_bucket); if (ctx->body != NULL) { serf_bucket_aggregate_append(bucket, ctx->body); } /* Our private context is no longer needed, and is not referred to by * any existing bucket. Toss it. */ serf_bucket_mem_free(bucket->allocator, ctx);} | 1874 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1874/2ca954891a4128162d15a2813f1ade79299fdbf4/request_buckets.c/buggy/buckets/request_buckets.c |
serf_bucket_aggregate_append(bucket, ctx->headers); | static void serialize_data(serf_bucket_t *bucket){ request_context_t *ctx = bucket->data; serf_bucket_t *new_bucket; const char *new_data; struct iovec iov[16]; apr_size_t nvec, nbytes; /* Serialize the request-line and headers into one mother string, * and wrap a bucket around it. */ iov[0].iov_base = (char*)ctx->method; iov[0].iov_len = strlen(ctx->method); iov[1].iov_base = " "; iov[1].iov_len = sizeof(" ") - 1; iov[2].iov_base = (char*)ctx->uri; iov[2].iov_len = strlen(ctx->uri); iov[3].iov_base = " HTTP/1.1\r\n"; iov[3].iov_len = sizeof(" HTTP/1.1\r\n") - 1; nvec = 4; if (bucket->metadata) { apr_hash_index_t *hi; apr_pool_t *p; const void *hash_ptr; apr_hash_t *hash; /* Okay, we might have headers. */ serf_bucket_get_metadata(bucket, SERF_REQUEST_HEADERS, 0, &hash_ptr); if (hash_ptr) { hash = (apr_hash_t*)hash_ptr; /* Check to see if we have enough free IO vecs to handle this. */ if ((apr_hash_count(hash) * 3) > 16 - nvec) { /* XXX: Handle me. */ abort(); } p = serf_bucket_allocator_get_pool(bucket->allocator); for (hi = apr_hash_first(p, hash); hi; hi = apr_hash_next(hi)) { const void *key; void *val; apr_ssize_t key_len; apr_hash_this(hi, &key, &key_len, &val); iov[nvec].iov_base = (char*)key; iov[nvec++].iov_len = key_len; iov[nvec].iov_base = ": "; iov[nvec++].iov_len = sizeof(": ") - 1; iov[nvec].iov_base = val; iov[nvec++].iov_len = strlen((char*)val); iov[nvec].iov_base = "\r\n"; iov[nvec++].iov_len = sizeof("\r\n") - 1; } } } iov[nvec].iov_base = "\r\n"; iov[nvec++].iov_len = sizeof("\r\n") - 1; /* ### pool allocation! */ new_data = apr_pstrcatv(serf_bucket_allocator_get_pool(bucket->allocator), iov, nvec, &nbytes); /* Create a new bucket for this string. A free function isn't needed * since the string is residing in a pool. */ new_bucket = SERF_BUCKET_SIMPLE_STRING_LEN(new_data, nbytes, bucket->allocator); /* Build up the new bucket structure. * * Note that self needs to become an aggregate bucket so that a * pointer to self still represents the "right" data. */ serf_bucket_aggregate_become(bucket); /* Insert the two buckets. */ serf_bucket_aggregate_append(bucket, new_bucket); if (ctx->body != NULL) { serf_bucket_aggregate_append(bucket, ctx->body); } /* Our private context is no longer needed, and is not referred to by * any existing bucket. Toss it. */ serf_bucket_mem_free(bucket->allocator, ctx);} | 1874 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1874/2ca954891a4128162d15a2813f1ade79299fdbf4/request_buckets.c/buggy/buckets/request_buckets.c |
|
/* This should never happen */ if ( bd_count == 16 ) { printk(("TX ERROR:Too many mbufs in the packet!!!\n")) printk(("Must coalesce!\n")) } | void send_packet( struct ifnet *ifp, struct mbuf *m){ i596_tbd *pPrev = I596_NULL; i596_tbd *pRemainingTbdList; i596_tbd *pTbd; struct mbuf *n, *input_m = m; uti596_softc_ *sc = ifp->if_softc; struct mbuf *l = NULL; unsigned int length = 0; rtems_status_code status; int bd_count = 0; rtems_event_set events; /* * For all mbufs in the chain, * fill a transmit buffer descriptor for each */ pTbd = (i596_tbd*) word_swap ((unsigned long)sc->pTxCmd->pTbd); do { if (m->m_len) { /* * Fill in the buffer descriptor */ length += m->m_len; pTbd->data = (char *) word_swap ((unsigned long) mtod (m, void *)); pTbd->size = m->m_len; pPrev = pTbd; pTbd = (i596_tbd *) word_swap ((unsigned long) pTbd->next); l = m; m = m->m_next; } else { /* * Just toss empty mbufs */ MFREE (m, n); m = n; if (l != NULL) l->m_next = m; } } while( m != NULL && ++bd_count < 16 ); /* This should never happen */ if ( bd_count == 16 ) { printk(("TX ERROR:Too many mbufs in the packet!!!\n")) printk(("Must coalesce!\n")) } if ( length < UTI_596_ETH_MIN_SIZE ) { pTbd->data = (char *) word_swap ((unsigned long) sc->zeroes); /* add padding to pTbd */ pTbd->size = UTI_596_ETH_MIN_SIZE - length; /* zeroes have no effect on the CRC */ } else /* Don't use pTbd in the send routine */ pTbd = pPrev; /* Disconnect the packet from the list of Tbd's */ pRemainingTbdList = (i596_tbd *) word_swap ((unsigned long)pTbd->next); pTbd->next = I596_NULL; pTbd->size |= UTI_596_END_OF_FRAME; sc->rawsndcnt++; #ifdef DBG_SEND printk(("send_packet: sending packet\n")) #endif /* Sending Zero length packet: shouldn't happen */ if (pTbd->size <= 0) return; #ifdef DBG_PACKETS printk (("\nsend_packet: Transmitter adds packet\n")) print_hdr ( sc->pTxCmd->pTbd->data ); /* print the first part */ print_pkt ( sc->pTxCmd->pTbd->next->data ); /* print the first part */ print_echo (sc->pTxCmd->pTbd->data); #endif /* add the command to the output command queue */ uti596_addCmd ( (i596_cmd *) sc->pTxCmd ); /* sleep until the command has been processed or Timeout encountered. */ status= rtems_bsdnet_event_receive (INTERRUPT_EVENT, RTEMS_WAIT|RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &events); if ( status != RTEMS_SUCCESSFUL ) { printk(("Could not sleep %s\n", rtems_status_text(status))) } #ifdef DBG_SEND printk(("send_packet: RAW - wake\n")) #endif sc->txInterrupts++; if ( sc->pTxCmd -> cmd.status & STAT_OK ) { sc->stats.tx_packets++; } else { printk(("*** send_packet: Driver Error 0x%x\n", sc->pTxCmd -> cmd.status )) sc->stats.tx_errors++; if ( sc->pTxCmd->cmd.status & 0x0020 ) sc->stats.tx_retries_exceeded++; if (!(sc->pTxCmd->cmd.status & 0x0040)) sc->stats.tx_heartbeat_errors++; if ( sc->pTxCmd->cmd.status & 0x0400 ) sc->stats.tx_carrier_errors++; if ( sc->pTxCmd->cmd.status & 0x0800 ) sc->stats.collisions++; if ( sc->pTxCmd->cmd.status & 0x1000 ) sc->stats.tx_aborted_errors++; } /* end if stat_ok */ /* * Restore the transmitted buffer descriptor chain. */ pTbd -> next = (i596_tbd *) word_swap ((unsigned long)pRemainingTbdList); /* * Free the mbufs used by the sender. */ m = input_m; while ( m != NULL ) { MFREE(m,n); m = n; }} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/8ef38186faea3d9b5e6f0f1242f668cb7e7a3d52/network.c/buggy/c/src/lib/libbsp/m68k/mvme167/network/network.c |
|
if ( !status ) | if ( status != 0 ) | int sem_unlink( const char *name){ int status; register POSIX_Semaphore_Control *the_semaphore; Objects_Id the_semaphore_id; Objects_Locations location; status = _POSIX_Semaphore_Name_to_id( name, &the_semaphore_id ); if ( !status ) set_errno_and_return_minus_one( status ); the_semaphore = _POSIX_Semaphore_Get( &the_semaphore_id, &location ); switch ( location ) { case OBJECTS_ERROR: set_errno_and_return_minus_one( EINVAL ); case OBJECTS_REMOTE: _Thread_Dispatch(); return POSIX_MP_NOT_IMPLEMENTED(); set_errno_and_return_minus_one( EINVAL ); case OBJECTS_LOCAL:#if defined(RTEMS_MULTIPROCESSING) if ( the_semaphore->process_shared == PTHREAD_PROCESS_SHARED ) { _Objects_MP_Close( &_POSIX_Semaphore_Information, the_semaphore->Object.id ); }#endif the_semaphore->linked = FALSE; _POSIX_Semaphore_Delete( the_semaphore ); _Thread_Enable_dispatch(); return 0; } return POSIX_BOTTOM_REACHED();} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/17879f4750a2bc0d556c8cd1d0f6715b127d681a/semunlink.c/buggy/c/src/exec/posix/src/semunlink.c |
_POSIX_Semaphore_Namespace_remove( the_semaphore ); | int sem_unlink( const char *name){ int status; register POSIX_Semaphore_Control *the_semaphore; Objects_Id the_semaphore_id; Objects_Locations location; status = _POSIX_Semaphore_Name_to_id( name, &the_semaphore_id ); if ( !status ) set_errno_and_return_minus_one( status ); the_semaphore = _POSIX_Semaphore_Get( &the_semaphore_id, &location ); switch ( location ) { case OBJECTS_ERROR: set_errno_and_return_minus_one( EINVAL ); case OBJECTS_REMOTE: _Thread_Dispatch(); return POSIX_MP_NOT_IMPLEMENTED(); set_errno_and_return_minus_one( EINVAL ); case OBJECTS_LOCAL:#if defined(RTEMS_MULTIPROCESSING) if ( the_semaphore->process_shared == PTHREAD_PROCESS_SHARED ) { _Objects_MP_Close( &_POSIX_Semaphore_Information, the_semaphore->Object.id ); }#endif the_semaphore->linked = FALSE; _POSIX_Semaphore_Delete( the_semaphore ); _Thread_Enable_dispatch(); return 0; } return POSIX_BOTTOM_REACHED();} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/17879f4750a2bc0d556c8cd1d0f6715b127d681a/semunlink.c/buggy/c/src/exec/posix/src/semunlink.c |
|
long av,tetpil,k,st; | ulong av = avma; long k,st; | thueinit(GEN poly, long flag, long prec){ GEN thueres,ALH,csts,c0; long av,tetpil,k,st; double d,dr; av=avma; uftot=0; if (checktnf(poly)) { uftot=(GEN)poly[2]; poly=(GEN)poly[1]; } else if (typ(poly)!=t_POL) err(notpoler,"thueinit"); if (degpol(poly)<=2) err(talker,"invalid polynomial in thue (need deg>2)"); if (!gisirreducible(poly)) err(redpoler,"thueinit"); st=sturm(poly); if (st) { dr=(double)((st+lgef(poly)-5)>>1); d=(double)degpol(poly); d=d*(d-1)*(d-2); /* Try to guess the precision by approximating Baker's bound. * Note that the guess is most of the time pretty generous, * ie 10 to 30 decimal digits above what is *really* necessary. * Note that the limiting step is the reduction. See paper. */ Prec=3 + (long)((5.83 + (dr+4)*5 + log(fact(dr+3)) + (dr+3)*log(dr+2) + (dr+3)*log(d) + log(log(2*d*(dr+2))) + (dr+1)) / 10.); ConstPrec=4; if (Prec<prec) Prec = prec; if (!checktnf(poly)) inithue(poly,flag); thueres=cgetg(8,t_VEC); thueres[1]=(long)poly; thueres[2]=(long)uftot; thueres[3]=(long)roo; Compute_Fund_Units(gmael(uftot,8,5)); ALH=cgetg(r+1,t_COL); for (k=1; k<=r; k++) ALH[k]=(long)Logarithmic_Height(k); thueres[4]=(long)ALH; thueres[5]=(long)MatFU; T_A_Matrices(); thueres[6]=(long)A; csts=cgetg(7,t_VEC); csts[1]=(long)c1; csts[2]=(long)c2; csts[3]=(long)halpha; csts[4]=(long)x0; csts[5]=(long)eps3; csts[6]=(long)stoi(Prec); thueres[7]=(long)csts; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres)); } thueres=cgetg(3,t_VEC); c0=gun; Prec=4; roo=roots(poly,Prec); for (k=1; k<lg(roo); k++) c0=gmul(c0, gimag((GEN)roo[k])); c0=ginv(gabs(c0,Prec)); thueres[1]=(long)poly; thueres[2]=(long)c0; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres));} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/7168973a923818508c45aa17d871c53e9225fad1/thue.c/buggy/src/modules/thue.c |
av=avma; uftot=0; | uftot = NULL; | thueinit(GEN poly, long flag, long prec){ GEN thueres,ALH,csts,c0; long av,tetpil,k,st; double d,dr; av=avma; uftot=0; if (checktnf(poly)) { uftot=(GEN)poly[2]; poly=(GEN)poly[1]; } else if (typ(poly)!=t_POL) err(notpoler,"thueinit"); if (degpol(poly)<=2) err(talker,"invalid polynomial in thue (need deg>2)"); if (!gisirreducible(poly)) err(redpoler,"thueinit"); st=sturm(poly); if (st) { dr=(double)((st+lgef(poly)-5)>>1); d=(double)degpol(poly); d=d*(d-1)*(d-2); /* Try to guess the precision by approximating Baker's bound. * Note that the guess is most of the time pretty generous, * ie 10 to 30 decimal digits above what is *really* necessary. * Note that the limiting step is the reduction. See paper. */ Prec=3 + (long)((5.83 + (dr+4)*5 + log(fact(dr+3)) + (dr+3)*log(dr+2) + (dr+3)*log(d) + log(log(2*d*(dr+2))) + (dr+1)) / 10.); ConstPrec=4; if (Prec<prec) Prec = prec; if (!checktnf(poly)) inithue(poly,flag); thueres=cgetg(8,t_VEC); thueres[1]=(long)poly; thueres[2]=(long)uftot; thueres[3]=(long)roo; Compute_Fund_Units(gmael(uftot,8,5)); ALH=cgetg(r+1,t_COL); for (k=1; k<=r; k++) ALH[k]=(long)Logarithmic_Height(k); thueres[4]=(long)ALH; thueres[5]=(long)MatFU; T_A_Matrices(); thueres[6]=(long)A; csts=cgetg(7,t_VEC); csts[1]=(long)c1; csts[2]=(long)c2; csts[3]=(long)halpha; csts[4]=(long)x0; csts[5]=(long)eps3; csts[6]=(long)stoi(Prec); thueres[7]=(long)csts; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres)); } thueres=cgetg(3,t_VEC); c0=gun; Prec=4; roo=roots(poly,Prec); for (k=1; k<lg(roo); k++) c0=gmul(c0, gimag((GEN)roo[k])); c0=ginv(gabs(c0,Prec)); thueres[1]=(long)poly; thueres[2]=(long)c0; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres));} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/7168973a923818508c45aa17d871c53e9225fad1/thue.c/buggy/src/modules/thue.c |
thueres[7]=(long)csts; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres)); | thueres[7]=(long)csts; return gerepilecopy(av,thueres); | thueinit(GEN poly, long flag, long prec){ GEN thueres,ALH,csts,c0; long av,tetpil,k,st; double d,dr; av=avma; uftot=0; if (checktnf(poly)) { uftot=(GEN)poly[2]; poly=(GEN)poly[1]; } else if (typ(poly)!=t_POL) err(notpoler,"thueinit"); if (degpol(poly)<=2) err(talker,"invalid polynomial in thue (need deg>2)"); if (!gisirreducible(poly)) err(redpoler,"thueinit"); st=sturm(poly); if (st) { dr=(double)((st+lgef(poly)-5)>>1); d=(double)degpol(poly); d=d*(d-1)*(d-2); /* Try to guess the precision by approximating Baker's bound. * Note that the guess is most of the time pretty generous, * ie 10 to 30 decimal digits above what is *really* necessary. * Note that the limiting step is the reduction. See paper. */ Prec=3 + (long)((5.83 + (dr+4)*5 + log(fact(dr+3)) + (dr+3)*log(dr+2) + (dr+3)*log(d) + log(log(2*d*(dr+2))) + (dr+1)) / 10.); ConstPrec=4; if (Prec<prec) Prec = prec; if (!checktnf(poly)) inithue(poly,flag); thueres=cgetg(8,t_VEC); thueres[1]=(long)poly; thueres[2]=(long)uftot; thueres[3]=(long)roo; Compute_Fund_Units(gmael(uftot,8,5)); ALH=cgetg(r+1,t_COL); for (k=1; k<=r; k++) ALH[k]=(long)Logarithmic_Height(k); thueres[4]=(long)ALH; thueres[5]=(long)MatFU; T_A_Matrices(); thueres[6]=(long)A; csts=cgetg(7,t_VEC); csts[1]=(long)c1; csts[2]=(long)c2; csts[3]=(long)halpha; csts[4]=(long)x0; csts[5]=(long)eps3; csts[6]=(long)stoi(Prec); thueres[7]=(long)csts; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres)); } thueres=cgetg(3,t_VEC); c0=gun; Prec=4; roo=roots(poly,Prec); for (k=1; k<lg(roo); k++) c0=gmul(c0, gimag((GEN)roo[k])); c0=ginv(gabs(c0,Prec)); thueres[1]=(long)poly; thueres[2]=(long)c0; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres));} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/7168973a923818508c45aa17d871c53e9225fad1/thue.c/buggy/src/modules/thue.c |
tetpil=avma; return gerepile(av,tetpil,gcopy(thueres)); | return gerepilecopy(av,thueres); | thueinit(GEN poly, long flag, long prec){ GEN thueres,ALH,csts,c0; long av,tetpil,k,st; double d,dr; av=avma; uftot=0; if (checktnf(poly)) { uftot=(GEN)poly[2]; poly=(GEN)poly[1]; } else if (typ(poly)!=t_POL) err(notpoler,"thueinit"); if (degpol(poly)<=2) err(talker,"invalid polynomial in thue (need deg>2)"); if (!gisirreducible(poly)) err(redpoler,"thueinit"); st=sturm(poly); if (st) { dr=(double)((st+lgef(poly)-5)>>1); d=(double)degpol(poly); d=d*(d-1)*(d-2); /* Try to guess the precision by approximating Baker's bound. * Note that the guess is most of the time pretty generous, * ie 10 to 30 decimal digits above what is *really* necessary. * Note that the limiting step is the reduction. See paper. */ Prec=3 + (long)((5.83 + (dr+4)*5 + log(fact(dr+3)) + (dr+3)*log(dr+2) + (dr+3)*log(d) + log(log(2*d*(dr+2))) + (dr+1)) / 10.); ConstPrec=4; if (Prec<prec) Prec = prec; if (!checktnf(poly)) inithue(poly,flag); thueres=cgetg(8,t_VEC); thueres[1]=(long)poly; thueres[2]=(long)uftot; thueres[3]=(long)roo; Compute_Fund_Units(gmael(uftot,8,5)); ALH=cgetg(r+1,t_COL); for (k=1; k<=r; k++) ALH[k]=(long)Logarithmic_Height(k); thueres[4]=(long)ALH; thueres[5]=(long)MatFU; T_A_Matrices(); thueres[6]=(long)A; csts=cgetg(7,t_VEC); csts[1]=(long)c1; csts[2]=(long)c2; csts[3]=(long)halpha; csts[4]=(long)x0; csts[5]=(long)eps3; csts[6]=(long)stoi(Prec); thueres[7]=(long)csts; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres)); } thueres=cgetg(3,t_VEC); c0=gun; Prec=4; roo=roots(poly,Prec); for (k=1; k<lg(roo); k++) c0=gmul(c0, gimag((GEN)roo[k])); c0=ginv(gabs(c0,Prec)); thueres[1]=(long)poly; thueres[2]=(long)c0; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres));} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/7168973a923818508c45aa17d871c53e9225fad1/thue.c/buggy/src/modules/thue.c |
unsigned8 b[NUM_FIELDS]; | uint8_t b[NUM_FIELDS]; | command_port(FTPD_SessionInfo_t *info, char const *args){ enum { NUM_FIELDS = 6 }; unsigned int a[NUM_FIELDS]; int n; close_data_socket(info); n = sscanf(args, "%u,%u,%u,%u,%u,%u", a+0, a+1, a+2, a+3, a+4, a+5); if(NUM_FIELDS == n) { int i; unsigned8 b[NUM_FIELDS]; for(i = 0; i < NUM_FIELDS; ++i) { if(a[i] > 255) break; b[i] = (unsigned8)a[i]; } if(i == NUM_FIELDS) { /* Note: while it contradicts with RFC959, we don't allow PORT command * to specify IP address different than those of the originating client * for the sake of safety. */ unsigned32 const *ip = (unsigned32 *)b; if(*ip == info->def_addr.sin_addr.s_addr) { info->data_addr.sin_addr.s_addr = *ip; info->data_addr.sin_port = *(unsigned16 *)(b + 4); info->data_addr.sin_family = AF_INET; memset(info->data_addr.sin_zero, 0, sizeof(info->data_addr.sin_zero)); info->use_default = 0; send_reply(info, 200, "PORT command successful."); return; /* success */ } else { send_reply(info, 425, "Address doesn't match peer's IP."); return; } } } send_reply(info, 501, "Syntax error.");} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/5146462f04bebbed0de4200c934bf5472c5a5427/ftpd.c/buggy/cpukit/ftpd/ftpd.c |
b[i] = (unsigned8)a[i]; | b[i] = (uint8_t)a[i]; | command_port(FTPD_SessionInfo_t *info, char const *args){ enum { NUM_FIELDS = 6 }; unsigned int a[NUM_FIELDS]; int n; close_data_socket(info); n = sscanf(args, "%u,%u,%u,%u,%u,%u", a+0, a+1, a+2, a+3, a+4, a+5); if(NUM_FIELDS == n) { int i; unsigned8 b[NUM_FIELDS]; for(i = 0; i < NUM_FIELDS; ++i) { if(a[i] > 255) break; b[i] = (unsigned8)a[i]; } if(i == NUM_FIELDS) { /* Note: while it contradicts with RFC959, we don't allow PORT command * to specify IP address different than those of the originating client * for the sake of safety. */ unsigned32 const *ip = (unsigned32 *)b; if(*ip == info->def_addr.sin_addr.s_addr) { info->data_addr.sin_addr.s_addr = *ip; info->data_addr.sin_port = *(unsigned16 *)(b + 4); info->data_addr.sin_family = AF_INET; memset(info->data_addr.sin_zero, 0, sizeof(info->data_addr.sin_zero)); info->use_default = 0; send_reply(info, 200, "PORT command successful."); return; /* success */ } else { send_reply(info, 425, "Address doesn't match peer's IP."); return; } } } send_reply(info, 501, "Syntax error.");} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/5146462f04bebbed0de4200c934bf5472c5a5427/ftpd.c/buggy/cpukit/ftpd/ftpd.c |
unsigned32 const *ip = (unsigned32 *)b; | uint32_t const *ip = (uint32_t *)b; | command_port(FTPD_SessionInfo_t *info, char const *args){ enum { NUM_FIELDS = 6 }; unsigned int a[NUM_FIELDS]; int n; close_data_socket(info); n = sscanf(args, "%u,%u,%u,%u,%u,%u", a+0, a+1, a+2, a+3, a+4, a+5); if(NUM_FIELDS == n) { int i; unsigned8 b[NUM_FIELDS]; for(i = 0; i < NUM_FIELDS; ++i) { if(a[i] > 255) break; b[i] = (unsigned8)a[i]; } if(i == NUM_FIELDS) { /* Note: while it contradicts with RFC959, we don't allow PORT command * to specify IP address different than those of the originating client * for the sake of safety. */ unsigned32 const *ip = (unsigned32 *)b; if(*ip == info->def_addr.sin_addr.s_addr) { info->data_addr.sin_addr.s_addr = *ip; info->data_addr.sin_port = *(unsigned16 *)(b + 4); info->data_addr.sin_family = AF_INET; memset(info->data_addr.sin_zero, 0, sizeof(info->data_addr.sin_zero)); info->use_default = 0; send_reply(info, 200, "PORT command successful."); return; /* success */ } else { send_reply(info, 425, "Address doesn't match peer's IP."); return; } } } send_reply(info, 501, "Syntax error.");} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/5146462f04bebbed0de4200c934bf5472c5a5427/ftpd.c/buggy/cpukit/ftpd/ftpd.c |
info->data_addr.sin_port = *(unsigned16 *)(b + 4); | info->data_addr.sin_port = *(uint16_t *)(b + 4); | command_port(FTPD_SessionInfo_t *info, char const *args){ enum { NUM_FIELDS = 6 }; unsigned int a[NUM_FIELDS]; int n; close_data_socket(info); n = sscanf(args, "%u,%u,%u,%u,%u,%u", a+0, a+1, a+2, a+3, a+4, a+5); if(NUM_FIELDS == n) { int i; unsigned8 b[NUM_FIELDS]; for(i = 0; i < NUM_FIELDS; ++i) { if(a[i] > 255) break; b[i] = (unsigned8)a[i]; } if(i == NUM_FIELDS) { /* Note: while it contradicts with RFC959, we don't allow PORT command * to specify IP address different than those of the originating client * for the sake of safety. */ unsigned32 const *ip = (unsigned32 *)b; if(*ip == info->def_addr.sin_addr.s_addr) { info->data_addr.sin_addr.s_addr = *ip; info->data_addr.sin_port = *(unsigned16 *)(b + 4); info->data_addr.sin_family = AF_INET; memset(info->data_addr.sin_zero, 0, sizeof(info->data_addr.sin_zero)); info->use_default = 0; send_reply(info, 200, "PORT command successful."); return; /* success */ } else { send_reply(info, 425, "Address doesn't match peer's IP."); return; } } } send_reply(info, 501, "Syntax error.");} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/5146462f04bebbed0de4200c934bf5472c5a5427/ftpd.c/buggy/cpukit/ftpd/ftpd.c |
if (!signe(x)) { y=cgetr(3); y[1]=x[1]; y[2]=0; return y; } | if (!signe(x)) return realzero_bit(expo(x)); | mpsin(GEN x){ long mod8,av,tetpil; GEN y,p1; if (typ(x)!=t_REAL) err(typeer,"mpsin"); if (!signe(x)) { y=cgetr(3); y[1]=x[1]; y[2]=0; return y; } av=avma; p1=mpsc1(x,&mod8); tetpil=avma; switch(mod8) { case 0: case 6: y=mpaut(p1); break; case 1: case 5: y=addsr(1,p1); break; case 2: case 4: y=mpaut(p1); setsigne(y,-signe(y)); break; default: /* case 3: case 7: */ y=subsr(-1,p1); break; } return gerepile(av,tetpil,y);} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/1558baf8c3b715dd704e6dddf2c7f1f51dc47e84/trans1.c/buggy/src/basemath/trans1.c |
/* ### not true. we only want to read IF we have sent some data */ | static apr_status_t update_pollset(serf_connection_t *conn){ serf_context_t *ctx = conn->ctx; apr_status_t status; apr_pollfd_t desc = { 0 }; if (conn->address) { /* Remove the socket from the poll set. */ desc.desc_type = APR_POLL_SOCKET; desc.desc.s = conn->skt; } else { /* XXX This clearly ain't right. */ desc.desc_type = APR_POLL_FILE; desc.desc.f = conn->write_baton; } status = apr_pollset_remove(ctx->pollset, &desc); if (status && !APR_STATUS_IS_NOTFOUND(status)) return status; /* Now put it back in with the correct read/write values. */ desc.reqevents = 0; if (conn->requests) { /* If there are any outstanding events, then we want to read. */ desc.reqevents |= APR_POLLIN; /* If the connection has unwritten data, or there are any requests * that still have buckets to write out, then we want to write. */ if (conn->unwritten_len) desc.reqevents |= APR_POLLOUT; else { serf_request_t *request = conn->requests; while (request != NULL && request->req_bkt == NULL) request = request->next; if (request != NULL) desc.reqevents |= APR_POLLOUT; } } desc.client_data = conn; /* Note: even if we don't want to read/write this socket, we still * want to poll it for hangups and errors. */ return apr_pollset_add(ctx->pollset, &desc);} | 1874 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1874/e06b259bd43d48160ae3d1a29dcb0efa1cd91318/context.c/clean/context.c |
|
testx(GEN bnfz, GEN bnf, GEN X, GEN module, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U) | testx(GEN bnfz, GEN bnr, GEN X, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U) | testx(GEN bnfz, GEN bnf, GEN X, GEN module, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U){ long i,l,lX; GEN be,polrelbe,p1,nf; if (gcmp0(X)) return NULL; lX = lg(X); for (i=dv+1; i<lX; i++) if (gcmp0((GEN)X[i])) return NULL; l = lg(vecMsup); for (i=1; i<l; i++) if (gcmp0(FpV_red(gmul((GEN)vecMsup[i],X), gell))) return NULL; be = gun; for (i=1; i<lX; i++) be = gmul(be, powgi((GEN)vecWB[i], (GEN)X[i])); if (DEBUGLEVEL>1) fprintferr("reducing beta = %Z\n",be); be = reducebeta(bnfz, be); if (DEBUGLEVEL>1) fprintferr("beta reduced = %Z\n",be); nf = (GEN)bnf[7]; polrelbe = computepolrelbeta((GEN)nf[1],be,g,U); p1 = unifpol(nf,polrelbe,0); l = lg(p1); /* lift to Q rational coeffs */ for (i=2; i<l; i++) if (isnfscalar((GEN)p1[i])) polrelbe[i] = mael(p1,i,1); p1 = denom(gtovec(p1)); polrelbe = rescale_pol(polrelbe,p1); if (DEBUGLEVEL>1) fprintferr("polrelbe = %Z\n",polrelbe); p1 = rnfconductor(bnf,polrelbe,0); if (!gegal((GEN)p1[1],module) || !gegal((GEN)p1[3],subgroup)) return NULL; return polrelbe;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/04840f96d7636290da57d0fd208561141349b8c5/kummer.c/buggy/src/modules/kummer.c |
be = gun; for (i=1; i<lX; i++) be = gmul(be, powgi((GEN)vecWB[i], (GEN)X[i])); | be = factorback(vecWB, X); | testx(GEN bnfz, GEN bnf, GEN X, GEN module, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U){ long i,l,lX; GEN be,polrelbe,p1,nf; if (gcmp0(X)) return NULL; lX = lg(X); for (i=dv+1; i<lX; i++) if (gcmp0((GEN)X[i])) return NULL; l = lg(vecMsup); for (i=1; i<l; i++) if (gcmp0(FpV_red(gmul((GEN)vecMsup[i],X), gell))) return NULL; be = gun; for (i=1; i<lX; i++) be = gmul(be, powgi((GEN)vecWB[i], (GEN)X[i])); if (DEBUGLEVEL>1) fprintferr("reducing beta = %Z\n",be); be = reducebeta(bnfz, be); if (DEBUGLEVEL>1) fprintferr("beta reduced = %Z\n",be); nf = (GEN)bnf[7]; polrelbe = computepolrelbeta((GEN)nf[1],be,g,U); p1 = unifpol(nf,polrelbe,0); l = lg(p1); /* lift to Q rational coeffs */ for (i=2; i<l; i++) if (isnfscalar((GEN)p1[i])) polrelbe[i] = mael(p1,i,1); p1 = denom(gtovec(p1)); polrelbe = rescale_pol(polrelbe,p1); if (DEBUGLEVEL>1) fprintferr("polrelbe = %Z\n",polrelbe); p1 = rnfconductor(bnf,polrelbe,0); if (!gegal((GEN)p1[1],module) || !gegal((GEN)p1[3],subgroup)) return NULL; return polrelbe;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/04840f96d7636290da57d0fd208561141349b8c5/kummer.c/buggy/src/modules/kummer.c |
nf = (GEN)bnf[7]; | nf = checknf(bnr); | testx(GEN bnfz, GEN bnf, GEN X, GEN module, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U){ long i,l,lX; GEN be,polrelbe,p1,nf; if (gcmp0(X)) return NULL; lX = lg(X); for (i=dv+1; i<lX; i++) if (gcmp0((GEN)X[i])) return NULL; l = lg(vecMsup); for (i=1; i<l; i++) if (gcmp0(FpV_red(gmul((GEN)vecMsup[i],X), gell))) return NULL; be = gun; for (i=1; i<lX; i++) be = gmul(be, powgi((GEN)vecWB[i], (GEN)X[i])); if (DEBUGLEVEL>1) fprintferr("reducing beta = %Z\n",be); be = reducebeta(bnfz, be); if (DEBUGLEVEL>1) fprintferr("beta reduced = %Z\n",be); nf = (GEN)bnf[7]; polrelbe = computepolrelbeta((GEN)nf[1],be,g,U); p1 = unifpol(nf,polrelbe,0); l = lg(p1); /* lift to Q rational coeffs */ for (i=2; i<l; i++) if (isnfscalar((GEN)p1[i])) polrelbe[i] = mael(p1,i,1); p1 = denom(gtovec(p1)); polrelbe = rescale_pol(polrelbe,p1); if (DEBUGLEVEL>1) fprintferr("polrelbe = %Z\n",polrelbe); p1 = rnfconductor(bnf,polrelbe,0); if (!gegal((GEN)p1[1],module) || !gegal((GEN)p1[3],subgroup)) return NULL; return polrelbe;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/04840f96d7636290da57d0fd208561141349b8c5/kummer.c/buggy/src/modules/kummer.c |
p1 = rnfconductor(bnf,polrelbe,0); if (!gegal((GEN)p1[1],module) || !gegal((GEN)p1[3],subgroup)) return NULL; | p1 = rnfnormgroup(bnr,polrelbe); if (!gegal(p1,subgroup)) return NULL; | testx(GEN bnfz, GEN bnf, GEN X, GEN module, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U){ long i,l,lX; GEN be,polrelbe,p1,nf; if (gcmp0(X)) return NULL; lX = lg(X); for (i=dv+1; i<lX; i++) if (gcmp0((GEN)X[i])) return NULL; l = lg(vecMsup); for (i=1; i<l; i++) if (gcmp0(FpV_red(gmul((GEN)vecMsup[i],X), gell))) return NULL; be = gun; for (i=1; i<lX; i++) be = gmul(be, powgi((GEN)vecWB[i], (GEN)X[i])); if (DEBUGLEVEL>1) fprintferr("reducing beta = %Z\n",be); be = reducebeta(bnfz, be); if (DEBUGLEVEL>1) fprintferr("beta reduced = %Z\n",be); nf = (GEN)bnf[7]; polrelbe = computepolrelbeta((GEN)nf[1],be,g,U); p1 = unifpol(nf,polrelbe,0); l = lg(p1); /* lift to Q rational coeffs */ for (i=2; i<l; i++) if (isnfscalar((GEN)p1[i])) polrelbe[i] = mael(p1,i,1); p1 = denom(gtovec(p1)); polrelbe = rescale_pol(polrelbe,p1); if (DEBUGLEVEL>1) fprintferr("polrelbe = %Z\n",polrelbe); p1 = rnfconductor(bnf,polrelbe,0); if (!gegal((GEN)p1[1],module) || !gegal((GEN)p1[3],subgroup)) return NULL; return polrelbe;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/04840f96d7636290da57d0fd208561141349b8c5/kummer.c/buggy/src/modules/kummer.c |
const int pk = _pk(p,k), L = lg(tabaall)-1, lz = pk - L; | const int pk = u_pow(p,k), L = lg(tabaall)-1, lz = pk - L; | extendtabs(GEN N, int p, int k){ const int pk = _pk(p,k), L = lg(tabaall)-1, lz = pk - L; const ulong ltab = (NBITSN/kglob)+2; if (lz <= 0) { if (tabcyc[pk]==0) filltabs(N,p,k,ltab); return; } extend((GEN*)&tabaall, lz); extend((GEN*)&tabtall, lz); extend((GEN*)&tabcyc, lz); extend(&tabefin, lz); extend(&tabE, lz); extend(&tabTH, lz); extend(&tabeta, lz); extend(&sgt, lz); extend(&ctsgt, lz); filltabs(N,p,k, ltab);} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/8ac2292b2e02fd23dcdd96371571717ef1011e3f/aprcl.c/clean/src/modules/aprcl.c |
extend(&tabefin, lz); | extendtabs(GEN N, int p, int k){ const int pk = _pk(p,k), L = lg(tabaall)-1, lz = pk - L; const ulong ltab = (NBITSN/kglob)+2; if (lz <= 0) { if (tabcyc[pk]==0) filltabs(N,p,k,ltab); return; } extend((GEN*)&tabaall, lz); extend((GEN*)&tabtall, lz); extend((GEN*)&tabcyc, lz); extend(&tabefin, lz); extend(&tabE, lz); extend(&tabTH, lz); extend(&tabeta, lz); extend(&sgt, lz); extend(&ctsgt, lz); filltabs(N,p,k, ltab);} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/8ac2292b2e02fd23dcdd96371571717ef1011e3f/aprcl.c/clean/src/modules/aprcl.c |
|
pushtmatrix((SDL_svg_context *)closure); | pushtmatrix(c); c->minx = HUGE; c->miny = HUGE; c->maxx = -HUGE; c->maxy = -HUGE; | static svg_status_t _SDL_SVG_BeginElement (void *closure){ dprintf("svg_BeginElement\n"); pushtmatrix((SDL_svg_context *)closure); return SVG_STATUS_SUCCESS;} | 1561 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1561/2ffd9ca885a57849f9fbafa985ba5ebc76eb8d74/SDL_svg.c/buggy/SDL_svg.c |
_extremes(c, x1, y1); _extremes(c, x2, y2); _extremes(c, x3, y3); | _SDL_SVG_CurveTo (void *closure, double x1, double y1, double x2, double y2, double x3, double y3){SDL_svg_context *c=closure;IPoint p1,p2,p3; dprintf("svg_CurveTo (x1=%5.5f, y1=%5.5f, x2=%5.5f, y2=%5.5f, x3=%5.5f, y3=%5.5f)\n", x1,y1,x2,y2,x3,y3); if(!c->path || !c->numpoints) return SVG_STATUS_INVALID_CALL; p1 = FixCoords(c, (IPoint) {x1, y1}); p2 = FixCoords(c, (IPoint) {x2, y2}); p3 = FixCoords(c, (IPoint) {x3, y3}); _AddIPoint(c, (IPoint) {p1.x, p1.y}, TAG_CONTROL3); _AddIPoint(c, (IPoint) {p2.x, p2.y}, TAG_CONTROL3); _AddIPoint(c, (IPoint) {p3.x, p3.y}, TAG_ONPATH); c->at = (IPoint) {x3, y3}; return SVG_STATUS_SUCCESS;} | 1561 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1561/2ffd9ca885a57849f9fbafa985ba5ebc76eb8d74/SDL_svg.c/buggy/SDL_svg.c |
|
_extremes(c, x, y); | _SDL_SVG_LineTo (void *closure, double x, double y){SDL_svg_context *c=closure; dprintf("svg_LineTo (x=%5.5f, y=%5.5f)\n",x,y); _AddIPoint(c, FixCoords(c, (IPoint) {x, y}), TAG_ONPATH); c->at = (IPoint) {x, y}; return SVG_STATUS_SUCCESS;} | 1561 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1561/2ffd9ca885a57849f9fbafa985ba5ebc76eb8d74/SDL_svg.c/buggy/SDL_svg.c |
|
_extremes(c, x, y); | _SDL_SVG_MoveTo (void *closure, double x, double y){SDL_svg_context *c=closure; dprintf("svg_MoveTo (x=%5.5f, y=%5.5f)\n",x,y); if(c->numpoints && needs_path_stop(c)) _AddPathStop(c, 0); _AddIPoint(c, FixCoords(c, (IPoint) {x, y}), TAG_ONPATH); c->at = (IPoint) {x, y}; return SVG_STATUS_SUCCESS;} | 1561 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1561/2ffd9ca885a57849f9fbafa985ba5ebc76eb8d74/SDL_svg.c/buggy/SDL_svg.c |
|
_extremes(c, x1, y1); _extremes(c, x2, y2); | _SDL_SVG_QuadraticCurveTo (void *closure, double x1, double y1, double x2, double y2){SDL_svg_context *c=closure;IPoint p1,p2; dprintf("svg_QuadraticCurveTo (x1=%5.5f, y1=%5.5f, x2=%5.5f, y2=%5.5f)\n", x1,y1,x2,y2); if(!c->path || !c->numpoints) return SVG_STATUS_INVALID_CALL; p1 = FixCoords(c, (IPoint) {x1, y1}); p2 = FixCoords(c, (IPoint) {x2, y2}); _AddIPoint(c, (IPoint) {p1.x, p1.y}, TAG_CONTROL2); _AddIPoint(c, (IPoint) {p2.x, p2.y}, TAG_ONPATH); c->at = (IPoint) {x2, y2}; return SVG_STATUS_SUCCESS;} | 1561 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1561/2ffd9ca885a57849f9fbafa985ba5ebc76eb8d74/SDL_svg.c/buggy/SDL_svg.c |
|
_extremes(c, x1, y1); _extremes(c, x2, y2); | _SDL_SVG_RenderRect (void *closure, svg_length_t *x_len, svg_length_t *y_len, svg_length_t *width_len, svg_length_t *height_len, svg_length_t *rx_len, svg_length_t *ry_len){SDL_svg_context *c=closure;float x1,y1;float x2,y2; dprintf("svg_RenderRect\n"); x1 = x_len->value; y1 = y_len->value; x2 = x1 + width_len->value; y2 = y1 + height_len->value; _AddIPoint(c, FixCoords(c, (IPoint) {x1, y1}), TAG_ONPATH); _AddIPoint(c, FixCoords(c, (IPoint) {x2, y1}), TAG_ONPATH); _AddIPoint(c, FixCoords(c, (IPoint) {x2, y2}), TAG_ONPATH); _AddIPoint(c, FixCoords(c, (IPoint) {x1, y2}), TAG_ONPATH); _SDL_SVG_RenderPath(closure); return SVG_STATUS_SUCCESS;} | 1561 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1561/2ffd9ca885a57849f9fbafa985ba5ebc76eb8d74/SDL_svg.c/buggy/SDL_svg.c |
|
dst.e = in->c * in->f - in->d * in->e; dst.f = in->b * in->e - in->a * in->f; | dst.e = (in->c * in->f - in->d * in->e)/det; dst.f = (in->b * in->e - in->a * in->f)/det; | svg_matrix_t svg_matrix_invert(svg_matrix_t *in){float det;svg_matrix_t dst; det = in->a * in->d - in->b * in->c; if(det == 0.0) return (svg_matrix_t) {1.0, 0.0, 0.0, 1.0, 0.0, 0.0}; dst.a = in->d/det; dst.b = -in->b/det; dst.c = -in->c/det; dst.d = in->a/det; dst.e = in->c * in->f - in->d * in->e; dst.f = in->b * in->e - in->a * in->f; return dst;} | 1561 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1561/5859f1732411637af272c589b6e2947495542a8c/matrix.c/buggy/matrix.c |
the_object = _Objects_Get( information, id, OBJECTS_SEARCH_LOCAL_NODE ); | the_object = _Objects_Get( information, id, &ignored_location ); | Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name){ unsigned32 the_api; unsigned32 the_class; Objects_Information *information; Objects_Control *the_object = (Objects_Control *) 0; if ( !name ) return OBJECTS_INVALID_NAME; the_api = _Objects_Get_API( id ); if ( the_api && the_api > OBJECTS_APIS_LAST ) return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( id ); information = _Objects_Information_table[ the_api ][ the_class ]; if ( !information ) return OBJECTS_INVALID_ID; if ( information->is_string ) return OBJECTS_INVALID_ID; the_object = _Objects_Get( information, id, OBJECTS_SEARCH_LOCAL_NODE ); if (!the_object) return OBJECTS_INVALID_ID; *name = the_object->name; return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/b2b143f402b30c7bbe4ee98c58221b0cc78a1e9e/objectidtoname.c/clean/cpukit/score/src/objectidtoname.c |
if (precision(p1)) return 1; | if (precision(p1)) res = 1; | use_maximal_pivot(GEN x){ long tx,i,j, lx = lg(x), ly = lg(x[1]); GEN p1; for (i=1; i<lx; i++) for (j=1; j<ly; j++) { p1 = gmael(x,i,j); tx = typ(p1); if (!is_scalar_t(tx)) return 0; if (precision(p1)) return 1; } return 0;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/40e574294e7e78bc748e3af5f0b3a447ab2c9e5f/alglin1.c/buggy/src/basemath/alglin1.c |
return 0; | return res; | use_maximal_pivot(GEN x){ long tx,i,j, lx = lg(x), ly = lg(x[1]); GEN p1; for (i=1; i<lx; i++) for (j=1; j<ly; j++) { p1 = gmael(x,i,j); tx = typ(p1); if (!is_scalar_t(tx)) return 0; if (precision(p1)) return 1; } return 0;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/40e574294e7e78bc748e3af5f0b3a447ab2c9e5f/alglin1.c/buggy/src/basemath/alglin1.c |
tmppool); | request->respool); | static apr_status_t read_from_connection(serf_connection_t *conn){ apr_status_t status; apr_pool_t *tmppool; /* Whatever is coming in on the socket corresponds to the first request * on our chain. */ serf_request_t *request = conn->requests; /* assert: request != NULL */ if ((status = apr_pool_create(&tmppool, request->respool)) != APR_SUCCESS) goto error; /* Invoke response handlers until we have no more work. */ while (1) { apr_pool_clear(tmppool); /* If the request doesn't have a response bucket, then call the * acceptor to get one created. */ if (request->resp_bkt == NULL) { request->resp_bkt = (*request->acceptor)(request, conn->skt, request->acceptor_baton, tmppool); apr_pool_clear(tmppool); } status = (*request->handler)(request->resp_bkt, request->handler_baton, tmppool); if (!APR_STATUS_IS_EOF(status)) { /* Whether success, or an error, there is no more to do unless * this request has been completed. */ goto error; } /* The request has been fully-delivered, and the response has * been fully-read. Remove it from our queue and loop to read * another response. */ conn->requests = request->next; /* The bucket is no longer needed, nor is the request's pool. */ serf_bucket_destroy(request->resp_bkt); apr_pool_destroy(request->respool); request = conn->requests; /* If we just ran out of requests, then update the pollset. We * don't want to read from this socket any more. We are definitely * done with this loop, too. */ if (request == NULL) { status = update_pollset(conn); goto error; } } error: apr_pool_destroy(tmppool); return status;} | 1874 /local/tlutelli/issta_data/temp/c/2005_temp/2005/1874/c88ac5bbf7089fbf6690293c86593aaffc529c9c/context.c/buggy/context.c |
unsigned32 erc32_sonic_read_register( | uint32_t erc32_sonic_read_register( | unsigned32 erc32_sonic_read_register( void *base, unsigned32 regno){ volatile unsigned32 *p = base; unsigned32 value; value = p[regno];#if (SONIC_DEBUG & SONIC_DEBUG_PRINT_REGISTERS) printf( "%p Read 0x%04x from %s (0x%02x)\n", &p[regno], value, SONIC_Reg_name[regno], regno ); fflush( stdout );#endif return 0x0ffff & value;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/1be1e913564b73bf50ce1aa58c003e564ddae83a/erc32sonic.c/buggy/c/src/lib/libbsp/sparc/erc32/erc32sonic/erc32sonic.c |
unsigned32 regno | uint32_t regno | unsigned32 erc32_sonic_read_register( void *base, unsigned32 regno){ volatile unsigned32 *p = base; unsigned32 value; value = p[regno];#if (SONIC_DEBUG & SONIC_DEBUG_PRINT_REGISTERS) printf( "%p Read 0x%04x from %s (0x%02x)\n", &p[regno], value, SONIC_Reg_name[regno], regno ); fflush( stdout );#endif return 0x0ffff & value;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/1be1e913564b73bf50ce1aa58c003e564ddae83a/erc32sonic.c/buggy/c/src/lib/libbsp/sparc/erc32/erc32sonic/erc32sonic.c |
volatile unsigned32 *p = base; unsigned32 value; | volatile uint32_t *p = base; uint32_t value; | unsigned32 erc32_sonic_read_register( void *base, unsigned32 regno){ volatile unsigned32 *p = base; unsigned32 value; value = p[regno];#if (SONIC_DEBUG & SONIC_DEBUG_PRINT_REGISTERS) printf( "%p Read 0x%04x from %s (0x%02x)\n", &p[regno], value, SONIC_Reg_name[regno], regno ); fflush( stdout );#endif return 0x0ffff & value;} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/1be1e913564b73bf50ce1aa58c003e564ddae83a/erc32sonic.c/buggy/c/src/lib/libbsp/sparc/erc32/erc32sonic/erc32sonic.c |
rtems_unsigned32 task_count = 0; | uint32_t task_count = 0; | void test1(){ boolean auto_extend; rtems_status_code result; rtems_unsigned32 task_count = 0; Objects_Information *the_information; char c1 = 'a'; char c2 = 'a'; char c3 = '0'; char c4 = '0'; printf( "\n TEST1 : auto-extend disabled.\n" ); /* * This is a major hack and only recommended for a test. Doing this * saves having another test. */ the_information = _Objects_Information_table[OBJECTS_CLASSIC_API][OBJECTS_RTEMS_TASKS]; auto_extend = the_information->auto_extend; the_information->auto_extend = FALSE; while (task_count < MAX_TASKS) { rtems_name name; printf(" TEST1 : creating task '%c%c%c%c', ", c1, c2, c3, c4); name = rtems_build_name(c1, c2, c3, c4); result = rtems_task_create(name, 10, RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_ATTRIBUTES, RTEMS_LOCAL, &task_id[task_count]); if (status_code_bad(result)) break; printf("number = %3i, id = %08x, starting, ", task_count, task_id[task_count]); fflush(stdout); result = rtems_task_start(task_id[task_count], test_task, (rtems_task_argument) task_count); if (status_code_bad(result)) break; /* * Update the name. */ NEXT_TASK_NAME(c1, c2, c3, c4); task_count++; } if (task_count >= MAX_TASKS) printf( "\nMAX_TASKS too small for work-space size, please make larger !!\n\n" ); if (task_count != (TASK_ALLOCATION_SIZE - 1)) { printf( " FAIL1 : the number of tasks does not equal the expected size -\n" " task created = %i, required number = %i\n", task_count, TASK_ALLOCATION_SIZE); exit( 1 ); } destory_all_tasks("TEST1"); the_information->auto_extend = auto_extend; printf( " TEST1 : completed\n" );} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/4c84d7b760ceb1e140c1cfc0fa64289ca4d243ed/test1.c/clean/testsuites/samples/unlimited/test1.c |
puts(""); | void stat_a_file( const char *file){ int status; struct stat statbuf; assert( file ); printf( "stat( %s ) returned ", file ); fflush( stdout ); status = stat( file, &statbuf ); if ( status == -1 ) { printf( ": %s\n", strerror( errno ) ); } else { dump_statbuf( &statbuf ); }} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/78edd4446b55fa9a1df5270736585b2b6d135028/test.c/clean/c/src/tests/psxtests/psxfile01/test.c |
|
long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; | long ell, i, j, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, vnf; long l, lSp, lSml2, lSl2, lW; | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; | GEN polnf,bnf,nf,bnfz,nfz,bid,ideal,cycgen,gell,p1,p2,wk,U,vselmer; GEN clgp,fununits,torsunit,Tc,Tv,P; GEN Q,idealz,gothf,factgothf; GEN M,K,y,vecMsup,vecW,vecWA,vecWB,vecB,vecC; GEN u,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp,listprSp; | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 7 */ | /* step 7 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 1 of alg 5.3.5. */ | /* step 1 of alg 5.3.5. */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ | compositum_red(&COMPO, polnf, cyclo(ell,vnf)); /* step 2 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; | degKz = degpol(COMPO.R); m = degKz / degK; d = (ell-1) / m; | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ | /* step 3 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
bnfz = bnfinit0(R,1,NULL,prec); | /* could factor disc(R) using th. 2.1.6. */ bnfz = bnfinit0(COMPO.R,1,NULL,prec); cycgen = check_and_build_cycgen(bnfz); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
tau = get_tau(&_tau, nfz, U); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
|
cycgen = check_and_build_cycgen(bnfz); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
|
/* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); | /* compute the u_j (see remark 5.2.15.) */ u = cgetg(l,t_VEC); for (j=1; j<=rc; j++) u[j] = zero; for ( ; j< l; j++) u[j] = lmpinvmod((GEN)cyc[j], gell); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 4 */ | /* compute action of tau */ U = gadd(gpowgs(COMPO.q, g), gmul(COMPO.k, COMPO.p)); U = poleval(COMPO.rev, U); tau = get_tau(&_tau, nfz, U); /* step 4 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); | p1 = tauofideal(nfz, (GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,u,gell,rc); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; | p2 = vecB; | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
p3 = tauofvec(p3, tau); | p2 = tauofvec(p2, tau); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; | vecC[i] = (long)famat_mul((GEN)vecC[i], famat_factorback(p2, (GEN)T[i])); } | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 5 */ | /* step 5 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 6 */ | /* step 6 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ | /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 8\n"); p1 = RXQ_powers(lift_intern(COMPO.p), COMPO.R, degK-1); p1 = vecpol_to_mat(p1, degKz); T.invexpoteta1 = invmat(p1); /* left inverse */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
{ /* l | N(ideal) */ | { /* ell | N(ideal) */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 9 */ | /* step 9 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 10 and step 11 */ | /* step 10, 11 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 12 */ | /* step 12 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); | GEN e, a, ap; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,u,gell,rc); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); | p2 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p2; ap = cgetg(1, t_MAT); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); | ap = famat_mul(ap, famat_pow(p2, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p2 = tauofelt(p2, tau); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
vecalphap[j] = (long)p2; } /* step 13 */ | vecalphap[j] = (long)ap; } /* step 13 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 14, 15, and 17 */ | /* step 14, 15, and 17 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
GEN QtP = gmul(gtrans_i(Q),matP); | GEN QtP = gmul(gtrans_i(Q), matP); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 16 */ | /* step 16 */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ | /* step 18 & ff */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
y = cgetg(dK,t_VECSMALL); do | dK = lg(K)-1; y = cgetg(dK+1,t_VECSMALL); while (dK) | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
/* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do | y[i] = 1; /* y = [0,...,0,1] */ do { /* cf. algo 5.3.18 */ GEN be, res, X = FpV_red(gmul_mati_smallvec(K, y), gell); if (ok_congruence(X,gell,lW,vecMsup)) | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); } DECREASE: | be = compute_beta(X, vecWB, gell, bnfz); res = compute_polrel(&T, be, g, ell); if (DEBUGLEVEL>1) fprintferr("polrel(beta) = %Z\n", res); if (gegal(subgroup, rnfnormgroup(bnr, res))) return gerepilecopy(av, res); /* DONE */ } } while (increment_y(y, dK, ell)); | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
while (dK); avma = av; return gzero; | avma = av; return gzero; /* FAIL */ | rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
int i; | subtask (rtems_task_argument arg){ int i; rtems_status_code sc; rtems_id sem = (rtems_id)arg; for (;;) { rtems_task_wake_after (ticksPerSecond * 2); sc = rtems_semaphore_release (sem); if (sc != RTEMS_SUCCESSFUL) printf ("%d: Can't release semaphore: %s\n", __LINE__, rtems_status_text (sc)); }} | 10355 /local/tlutelli/issta_data/temp/c/2005_temp/2005/10355/bfded728ec4c912f666df94867c118a1004b0165/init.c/clean/c/src/tests/sptests/sp29/init.c |
|
reducebeta(GEN bnfz, GEN be, long ell) | reducebeta(GEN bnfz, GEN be, GEN ell) | reducebeta(GEN bnfz, GEN be, long ell){ long j,ru, prec = nfgetprec(bnfz); GEN emb,z,u,matunit, nf = checknf(bnfz); matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ for (;;) { z = get_arch_real(nf, be, &emb, prec); if (z) break; prec = (prec-1)<<1; if (DEBUGLEVEL) err(warnprec,"reducebeta",prec); nf = nfnewprec(nf,prec); } z = concatsp(matunit, z); u = lllintern(z, 100, 1, prec); if (u) { ru = lg(u); for (j=1; j < ru; j++) if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ if (j < ru) { u = (GEN)u[j]; /* coords on (fu^ell, be) of a small generator */ ru--; setlg(u, ru); be = element_pow(nf, be, (GEN)u[ru]); be = fix_be(bnfz,be,u); } } return reducebetanaive(bnfz, be, NULL, ell);} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ | if (DEBUGLEVEL>1) fprintferr("reducing beta = %Z\n",be); /* reduce mod Q^ell */ be = reduce_mod_Qell(nf, be, ell); /* reduce l-th root */ z = idealsqrtn(nf, be, ell, 0); z = ideallllred_elt(nf, z); be = element_div(nf, be, element_pow(nf, z, ell)); /* make be integral */ be = reduce_mod_Qell(nf, be, ell); if (DEBUGLEVEL>1) fprintferr("beta reduced via ell-th root = %Z\n",be); matunit = gmul(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ | reducebeta(GEN bnfz, GEN be, long ell){ long j,ru, prec = nfgetprec(bnfz); GEN emb,z,u,matunit, nf = checknf(bnfz); matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ for (;;) { z = get_arch_real(nf, be, &emb, prec); if (z) break; prec = (prec-1)<<1; if (DEBUGLEVEL) err(warnprec,"reducebeta",prec); nf = nfnewprec(nf,prec); } z = concatsp(matunit, z); u = lllintern(z, 100, 1, prec); if (u) { ru = lg(u); for (j=1; j < ru; j++) if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ if (j < ru) { u = (GEN)u[j]; /* coords on (fu^ell, be) of a small generator */ ru--; setlg(u, ru); be = element_pow(nf, be, (GEN)u[ru]); be = fix_be(bnfz,be,u); } } return reducebetanaive(bnfz, be, NULL, ell);} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ | if (!divise(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ | reducebeta(GEN bnfz, GEN be, long ell){ long j,ru, prec = nfgetprec(bnfz); GEN emb,z,u,matunit, nf = checknf(bnfz); matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ for (;;) { z = get_arch_real(nf, be, &emb, prec); if (z) break; prec = (prec-1)<<1; if (DEBUGLEVEL) err(warnprec,"reducebeta",prec); nf = nfnewprec(nf,prec); } z = concatsp(matunit, z); u = lllintern(z, 100, 1, prec); if (u) { ru = lg(u); for (j=1; j < ru; j++) if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ if (j < ru) { u = (GEN)u[j]; /* coords on (fu^ell, be) of a small generator */ ru--; setlg(u, ru); be = element_pow(nf, be, (GEN)u[ru]); be = fix_be(bnfz,be,u); } } return reducebetanaive(bnfz, be, NULL, ell);} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
be = fix_be(bnfz,be,u); | be = fix_be(bnfz, be, gmul(ell,u)); | reducebeta(GEN bnfz, GEN be, long ell){ long j,ru, prec = nfgetprec(bnfz); GEN emb,z,u,matunit, nf = checknf(bnfz); matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ for (;;) { z = get_arch_real(nf, be, &emb, prec); if (z) break; prec = (prec-1)<<1; if (DEBUGLEVEL) err(warnprec,"reducebeta",prec); nf = nfnewprec(nf,prec); } z = concatsp(matunit, z); u = lllintern(z, 100, 1, prec); if (u) { ru = lg(u); for (j=1; j < ru; j++) if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ if (j < ru) { u = (GEN)u[j]; /* coords on (fu^ell, be) of a small generator */ ru--; setlg(u, ru); be = element_pow(nf, be, (GEN)u[ru]); be = fix_be(bnfz,be,u); } } return reducebetanaive(bnfz, be, NULL, ell);} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |
if (DEBUGLEVEL>1) fprintferr("beta LLL-reduced mod units = %Z\n",be); | reducebeta(GEN bnfz, GEN be, long ell){ long j,ru, prec = nfgetprec(bnfz); GEN emb,z,u,matunit, nf = checknf(bnfz); matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ for (;;) { z = get_arch_real(nf, be, &emb, prec); if (z) break; prec = (prec-1)<<1; if (DEBUGLEVEL) err(warnprec,"reducebeta",prec); nf = nfnewprec(nf,prec); } z = concatsp(matunit, z); u = lllintern(z, 100, 1, prec); if (u) { ru = lg(u); for (j=1; j < ru; j++) if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ if (j < ru) { u = (GEN)u[j]; /* coords on (fu^ell, be) of a small generator */ ru--; setlg(u, ru); be = element_pow(nf, be, (GEN)u[ru]); be = fix_be(bnfz,be,u); } } return reducebetanaive(bnfz, be, NULL, ell);} | 2195 /local/tlutelli/issta_data/temp/c/2005_temp/2005/2195/73929b165be3dc8f342788321bf5a06394a0cf3d/kummer.c/clean/src/modules/kummer.c |