hamnaanaa commited on
Commit
d06f140
·
1 Parent(s): e50c862

Upload 2 files

Browse files
Files changed (2) hide show
  1. cvat_preprocessor.py +43 -0
  2. dataloader.py +115 -0
cvat_preprocessor.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import xml.etree.ElementTree as ET
2
+
3
+
4
+ class CVATPreprocessor():
5
+ """Helper class to preprocess annotations in `CVAT for images 1.1` XML-encoded format"""
6
+ @staticmethod
7
+ def get_all_image_names(annotation_path):
8
+ """Returns a list of all image names present in the annotation file"""
9
+ annotations = ET.parse(annotation_path).getroot()
10
+ images = annotations.findall("image")
11
+ return [image.attrib["name"] for image in images]
12
+
13
+ @staticmethod
14
+ def get_all_image_polygons(image_name, annotation_path):
15
+ """
16
+ Returns a dictionary of all polygons for the given image name.
17
+ The key is the label and the value is a list of polygons (= each a list of points) associated with that label.
18
+ """
19
+ annotations = ET.parse(annotation_path).getroot()
20
+ image = annotations.find(f"image[@name='{image_name}']")
21
+ raw_polygons = image.findall("polygon")
22
+
23
+ # Extract the label and the raw points for each polygon,
24
+ # parse the points to (x, y) and store each label-polygon pair in a list
25
+ processed_polygons = {}
26
+ for raw_polygon in raw_polygons:
27
+ label, points = raw_polygon.attrib["label"], raw_polygon.attrib["points"].split(";")
28
+ # Parse the points to (x, y) int pairs
29
+ points = [(int(float(point.split(",")[0])), int(float(point.split(",")[1]))) for point in points]
30
+ processed_polygons[label] = processed_polygons.get(label, []) + [points]
31
+
32
+ return processed_polygons
33
+
34
+
35
+ if __name__ == "__main__":
36
+ # Example usage
37
+ PATH_TO_ANNOTATIONS = "offline learning/semantic segmentation/data/annotations/"
38
+ PATH_TO_IMAGES = "offline learning/semantic segmentation/data/frames/"
39
+ CVAT_XML_FILENAME = "segmentation_annotation.xml"
40
+ imgs = CVATPreprocessor.get_all_image_names(PATH_TO_ANNOTATIONS + CVAT_XML_FILENAME)
41
+ polygons = CVATPreprocessor.get_all_image_polygons(imgs[0], PATH_TO_ANNOTATIONS + CVAT_XML_FILENAME)
42
+ print(f"Loaded {len(imgs)} images from {PATH_TO_ANNOTATIONS + CVAT_XML_FILENAME}")
43
+ print(f"Image '{imgs[0]} has {len(polygons)} polygon categories")
dataloader.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.utils.data
4
+ from PIL import Image, ImageDraw
5
+ from torchvision import transforms
6
+
7
+ from cvat_preprocessor import CVATPreprocessor
8
+
9
+ DEBUG = True
10
+
11
+ class DTSegmentationDataset(torch.utils.data.Dataset):
12
+ """
13
+ Dataloader for the Duckietown dataset.
14
+ Loads the images and the corresponding segmentation targets.
15
+ """
16
+ PATH_TO_ANNOTATIONS = "offline learning/semantic segmentation/data/annotations/"
17
+ PATH_TO_IMAGES = "offline learning/semantic segmentation/data/frames/"
18
+ CVAT_XML_FILENAME = "segmentation_annotation.xml"
19
+ SEGM_LABELS = {
20
+ 'Background': {'id': 0, 'rgb_value': [0, 0, 0]}, # black
21
+ 'Ego Lane': {'id': 1, 'rgb_value': [102, 255, 102]}, # green
22
+ 'Opposite Lane': {'id': 2, 'rgb_value': [245, 147, 49]}, # orange
23
+ 'Obstacle': {'id': 3, 'rgb_value': [184, 61, 245]}, # purple
24
+ 'Road End': {'id': 4, 'rgb_value': [250, 50, 83]}, # red
25
+ 'Intersection': {'id': 5, 'rgb_value': [50, 183, 250]}, # blue
26
+ 'Middle Lane': {'id': 6, 'rgb_value': [255, 255, 0]}, # yellow
27
+ 'Side Lane': {'id': 7, 'rgb_value': [255, 255, 255]}, # white
28
+ }
29
+
30
+ def __init__(self):
31
+ super(DTSegmentationDataset, self).__init__()
32
+ # Store the list of all image names
33
+ self.imgs = CVATPreprocessor.get_all_image_names(self.PATH_TO_ANNOTATIONS + self.CVAT_XML_FILENAME)
34
+
35
+ def __getitem__(self, idx):
36
+ image_name = self.imgs[idx]
37
+ if DEBUG:
38
+ print(f"Fetching image {image_name}")
39
+ # load the image
40
+ img = Image.open(self.PATH_TO_IMAGES + image_name).convert("RGB")
41
+
42
+ # load the associated segmentation mask (list of polygons)
43
+ all_polygons = CVATPreprocessor.get_all_image_polygons(image_name, self.PATH_TO_ANNOTATIONS + self.CVAT_XML_FILENAME)
44
+
45
+ # Create a target image with the same spacial dimensions as the original image
46
+ # but a separate channel for each label
47
+ target = np.zeros((640, 480)).astype(np.longlong)
48
+
49
+ # Generate a random angle for rotation only once for both the image and the mask
50
+ random_angle = np.random.randint(-10, 10)
51
+
52
+ # Fill each channel with 1s where the corresponding label is present and 0s otherwise
53
+ for label, polygons in all_polygons.items():
54
+ # Create an empty bitmask for the current label and draw all label-associated polygons on it
55
+ mask = Image.new('L', img.size, 0)
56
+ drawer = ImageDraw.Draw(mask)
57
+ for polygon in polygons:
58
+ drawer.polygon(polygon, outline=255, fill=255)
59
+ # Show the mask for extra debugging
60
+ # mask.show()
61
+
62
+ # Rotate the mask
63
+ mask = transforms.Compose([
64
+ transforms.Resize((640, 480))
65
+ ])(mask)
66
+ mask = transforms.functional.rotate(mask, random_angle)
67
+
68
+ mask = np.array(mask) == 255
69
+ if DEBUG:
70
+ print(f"Label '{label}' has {np.sum(mask)} pixels. Assigning them a value {self.SEGM_LABELS[label]['id']}")
71
+
72
+ # Merge three road classes into one to improve the performance of the model
73
+ if label in ['Ego Lane', 'Opposite Lane', 'Intersection']:
74
+ target[mask] = self.SEGM_LABELS['Ego Lane']['id']
75
+ else:
76
+ target[mask] = self.SEGM_LABELS[label]['id']
77
+
78
+ img = transforms.Compose([
79
+ transforms.ToTensor(),
80
+ transforms.Resize((640, 480)),
81
+ transforms.ColorJitter(brightness=0.7, contrast=0.6, saturation=0.2),
82
+ # Normalize the image with the mean and standard deviation of the ImageNet dataset
83
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
84
+ ])(img)
85
+ img = transforms.functional.rotate(img, random_angle)
86
+
87
+ target = torch.from_numpy(target)
88
+
89
+ return img, target
90
+
91
+ def __len__(self):
92
+ return len(self.imgs)
93
+
94
+ @staticmethod
95
+ def label_img_to_rgb(label_img):
96
+ """
97
+ Converts a label image (with one channel per label) to an RGB image.
98
+ """
99
+ rgb_img = np.zeros((label_img.shape[0], label_img.shape[1], 3), dtype=np.uint8)
100
+ for label, label_info in DTSegmentationDataset.SEGM_LABELS.items():
101
+ mask = label_img == label_info['id']
102
+ rgb_img[mask] = label_info['rgb_value']
103
+ return rgb_img
104
+
105
+
106
+ # ---------------------
107
+ # Randomly select a batch of images and masks from the dataset
108
+ # and visualize them to check if the dataloader works correctly
109
+
110
+ if __name__ == "__main__":
111
+ if DEBUG:
112
+ dataset = DTSegmentationDataset()
113
+ image, target = dataset[0]
114
+ transforms.ToPILImage()(image).show()
115
+ transforms.ToPILImage()(DTSegmentationDataset.label_img_to_rgb(target)).show()