hassanjbara commited on
Commit
28f8c87
·
verified ·
1 Parent(s): 233efb1

Upload 2 files

Browse files
Files changed (2) hide show
  1. utils.py +137 -0
  2. workplace.ipynb +67 -0
utils.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ from typing import List
5
+ from cleanvision import Imagelab
6
+ from PIL import Image
7
+ from datasets import Dataset, Features, Image as ImageFeature
8
+
9
+
10
+ def images_with_deduplication(data_path):
11
+ imagelab = Imagelab(data_path=data_path)
12
+
13
+ # Automatically check for a predefined list of issues within your dataset
14
+ imagelab.find_issues({"near_duplicates": {}, "exact_duplicates": {}})
15
+
16
+ # load names of all images in the dataset
17
+ image_paths = list(Path(data_path).rglob("*.png"))
18
+ image_paths = [str(path.resolve()) for path in image_paths]
19
+ print(f"Number of images before deduplication: {len(image_paths)}")
20
+
21
+ duplicate_sets = imagelab.info["near_duplicates"]["sets"]
22
+ num_duplicates = sum([len(duplicate_set) - 1 for duplicate_set in duplicate_sets])
23
+
24
+ for duplicate_set in duplicate_sets:
25
+ for i in range(len(duplicate_set)):
26
+ if i > 0:
27
+ image_name = duplicate_set[i]
28
+ del image_paths[image_paths.index(image_name)]
29
+
30
+ print(f"Number of images after deduplication: {len(image_paths)}")
31
+ print(f"Number of images removed: {num_duplicates}")
32
+
33
+ return image_paths
34
+
35
+
36
+ def find_closest_pair(ref_timestamp, search_dir, threshold_ms=100):
37
+ search_files = list(search_dir.glob("*"))
38
+ search_timestamps = [int(f.stem.split("_")[0]) for f in search_files]
39
+
40
+ diffs = np.abs(np.array(search_timestamps) - ref_timestamp) / 1e6
41
+ min_idx = np.argmin(diffs)
42
+
43
+ if diffs[min_idx] <= threshold_ms:
44
+ return str(search_files[min_idx])
45
+ return None
46
+
47
+
48
+ def find_image_groups(
49
+ base_dir, ref_subdir, search_subdirs: List[str], threshold_ms=100
50
+ ):
51
+ base_path = Path(base_dir)
52
+ ref_dir = base_path / ref_subdir
53
+ search_dirs = [base_path / subdir for subdir in search_subdirs]
54
+
55
+ # deduplicate images from the reference directory
56
+ ref_dir_files = images_with_deduplication(ref_dir)
57
+
58
+ pairs = []
59
+ for ref_file in ref_dir_files:
60
+ ref_ts = int(ref_file.split("/")[-1].split("_")[0])
61
+ image_group = (ref_file,)
62
+
63
+ for search_dir in search_dirs:
64
+ assert search_dir.exists(), f"{search_dir} does not exist"
65
+
66
+ match = find_closest_pair(ref_ts, search_dir, threshold_ms)
67
+ if match:
68
+ image_group += (match,)
69
+ else:
70
+ image_group += (None,)
71
+
72
+ pairs.append(image_group)
73
+
74
+ return pairs
75
+
76
+
77
+ def visualize_images(image_tuple):
78
+ n = len(image_tuple)
79
+ fig, axes = plt.subplots(1, n, figsize=(6 * n, 4))
80
+
81
+ if n == 1:
82
+ axes = [axes]
83
+
84
+ for ax, img_path in zip(axes, image_tuple):
85
+ if img_path is None:
86
+ ax.axis("off")
87
+ continue
88
+
89
+ img = Image.open(img_path)
90
+
91
+ if "DEPTH" in str(img_path):
92
+ ax.imshow(img, cmap="viridis")
93
+ elif "THERMAL" in str(img_path):
94
+ ax.imshow(img, cmap="hot")
95
+ else:
96
+ img = Image.open(img_path)
97
+ ax.imshow(img)
98
+
99
+ ax.set_title(img_path.split("/")[-2])
100
+ plt.show()
101
+
102
+
103
+ # prepare the dataset for upload to huggingface
104
+ def create_image_dataset(image_tuples):
105
+ """
106
+ Create a HuggingFace dataset from a list of image tuples.
107
+
108
+ Args:
109
+ image_tuples: List of tuples, each containing (color, depth, depth_16bit, thermal, thermal_rgb) image paths
110
+ """
111
+
112
+ features = Features(
113
+ {
114
+ "color": ImageFeature(decode=True),
115
+ "depth": ImageFeature(decode=True),
116
+ "depth_16bit": ImageFeature(decode=True),
117
+ "thermal": ImageFeature(decode=True),
118
+ "thermal_rgb": ImageFeature(decode=True),
119
+ }
120
+ )
121
+
122
+ # Unzip the tuples into separate lists
123
+ color_imgs, depth_imgs, depth_16bit_imgs, thermal_imgs, thermal_rgb_imgs = zip(
124
+ *image_tuples
125
+ )
126
+
127
+ dataset_dict = {
128
+ "color": list(color_imgs),
129
+ "depth": list(depth_imgs),
130
+ "depth_16bit": list(depth_16bit_imgs),
131
+ "thermal": list(thermal_imgs),
132
+ "thermal_rgb": list(thermal_rgb_imgs),
133
+ }
134
+
135
+ dataset = Dataset.from_dict(dataset_dict, features=features)
136
+
137
+ return dataset
workplace.ipynb ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "%load_ext autoreload\n",
10
+ "%autoreload 2"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "code",
15
+ "execution_count": null,
16
+ "metadata": {
17
+ "scrolled": true
18
+ },
19
+ "outputs": [],
20
+ "source": [
21
+ "from utils import find_image_groups, create_image_dataset\n",
22
+ "from datasets import load_dataset, concatenate_datasets\n",
23
+ "\n",
24
+ "data_paths = [\n",
25
+ " \"./2023-07-21_14-08-29\",\n",
26
+ " \"./2023-07-21_14-44-56\",\n",
27
+ " # \"./2023-07-21_14-51-07\",\n",
28
+ " \"./2023-07-22_16-24-27\",\n",
29
+ "]\n",
30
+ "datasets = []\n",
31
+ "\n",
32
+ "for data_path in data_paths:\n",
33
+ " image_groups = find_image_groups(\n",
34
+ " data_path, \"RS_COLOR\", [\"RS_DEPTH\", \"RS_DEPTH_16bit\", \"THERMAL\", \"THERMAL_RGB\"], threshold_ms=100\n",
35
+ " )\n",
36
+ " new_dataset = create_image_dataset(image_groups)\n",
37
+ " datasets.append(new_dataset)\n",
38
+ " print(f\"Dataset {data_path} created with {len(new_dataset)} samples\")\n",
39
+ "\n",
40
+ "existing_dataset = load_dataset(\"hassanjbara/BASEPROD\", split=\"train\")\n",
41
+ "combined_dataset = concatenate_datasets([existing_dataset, *datasets])\n",
42
+ "combined_dataset.push_to_hub(\"hassanjbara/BASEPROD\",)"
43
+ ]
44
+ }
45
+ ],
46
+ "metadata": {
47
+ "kernelspec": {
48
+ "display_name": "Python 3 (ipykernel)",
49
+ "language": "python",
50
+ "name": "python3"
51
+ },
52
+ "language_info": {
53
+ "codemirror_mode": {
54
+ "name": "ipython",
55
+ "version": 3
56
+ },
57
+ "file_extension": ".py",
58
+ "mimetype": "text/x-python",
59
+ "name": "python",
60
+ "nbconvert_exporter": "python",
61
+ "pygments_lexer": "ipython3",
62
+ "version": "3.10.16"
63
+ }
64
+ },
65
+ "nbformat": 4,
66
+ "nbformat_minor": 4
67
+ }