Create parsynth-ocr-200k.py
Browse files- parsynth-ocr-200k.py +79 -0
parsynth-ocr-200k.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import os
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
|
8 |
+
_CITATION = """"""
|
9 |
+
|
10 |
+
_DESCRIPTION = """ParsynthOCR-200k: A synthetic dataset for OCR. (A 200k samples preview)"""
|
11 |
+
|
12 |
+
_DOWNLOAD_URLS = {
|
13 |
+
"train": "https://huggingface.co/datasets/hezarai/parsynth-ocr-200k/resolve/main/annotations_train.csv",
|
14 |
+
"test": "https://huggingface.co/datasets/hezarai/parsynth-ocr-200k/resolve/main/annotations_test.csv",
|
15 |
+
"data": "https://huggingface.co/datasets/hezarai/parsynth-ocr-200k/resolve/main/images.zip",
|
16 |
+
}
|
17 |
+
|
18 |
+
ZIP_IMAGES_DIR = "parsynth-ocr-200k"
|
19 |
+
|
20 |
+
|
21 |
+
class ParsynthOCR200KConfig(datasets.BuilderConfig):
|
22 |
+
def __init__(self, **kwargs):
|
23 |
+
super(ParsynthOCR200KConfig, self).__init__(**kwargs)
|
24 |
+
|
25 |
+
|
26 |
+
class ParsynthOCR200K(datasets.GeneratorBasedBuilder):
|
27 |
+
BUILDER_CONFIGS = [
|
28 |
+
ParsynthOCR200KConfig(
|
29 |
+
name="Parsynth200K",
|
30 |
+
version=datasets.Version("1.0.0"),
|
31 |
+
description=_DESCRIPTION,
|
32 |
+
),
|
33 |
+
]
|
34 |
+
|
35 |
+
def _info(self):
|
36 |
+
return datasets.DatasetInfo(
|
37 |
+
description=_DESCRIPTION,
|
38 |
+
features=datasets.Features(
|
39 |
+
{
|
40 |
+
"image_path": datasets.Value("string"),
|
41 |
+
"text": datasets.Value("string"),
|
42 |
+
}
|
43 |
+
),
|
44 |
+
citation=_CITATION,
|
45 |
+
)
|
46 |
+
|
47 |
+
def _split_generators(self, dl_manager):
|
48 |
+
"""
|
49 |
+
Return SplitGenerators.
|
50 |
+
"""
|
51 |
+
|
52 |
+
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
|
53 |
+
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
|
54 |
+
archive_path = dl_manager.download(_DOWNLOAD_URLS["data"])
|
55 |
+
images_dir = dl_manager.extract(archive_path) if not dl_manager.is_streaming else ""
|
56 |
+
images_dir = os.path.join(images_dir, ZIP_IMAGES_DIR)
|
57 |
+
|
58 |
+
return [
|
59 |
+
datasets.SplitGenerator(
|
60 |
+
name=datasets.Split.TRAIN, gen_kwargs={"annotations_file": train_path, "images_dir": images_dir}
|
61 |
+
),
|
62 |
+
datasets.SplitGenerator(
|
63 |
+
name=datasets.Split.TEST, gen_kwargs={"annotations_file": test_path, "images_dir": images_dir}
|
64 |
+
),
|
65 |
+
]
|
66 |
+
|
67 |
+
def _generate_examples(self, annotations_file, images_dir):
|
68 |
+
logger.info("⏳ Generating examples from = %s", annotations_file)
|
69 |
+
|
70 |
+
with open(annotations_file, encoding="utf-8") as csv_file:
|
71 |
+
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)
|
72 |
+
|
73 |
+
# Skip header
|
74 |
+
next(csv_reader, None)
|
75 |
+
|
76 |
+
for id_, row in enumerate(csv_reader):
|
77 |
+
filename, text = row
|
78 |
+
image_path = os.path.join(images_dir, filename)
|
79 |
+
yield id_, {"image_path": image_path, "text": text}
|