arxyzan commited on
Commit
9f71ebc
·
1 Parent(s): d8c7d75

Create sentiment_digikala_snappfood.py

Browse files
Files changed (1) hide show
  1. sentiment_digikala_snappfood.py +70 -0
sentiment_digikala_snappfood.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import datasets
3
+ from datasets.tasks import TextClassification
4
+
5
+
6
+ _DESCRIPTION = """\
7
+ Sentiment analysis dataset extracted and labeled from Digikala and Snapp Food comments
8
+ """
9
+
10
+ _DOWNLOAD_URLS = [
11
+ "https://huggingface.co/datasets/hezar-ai/sentiment_digikala_snappfood/blob/main/sentiment_digikala_snappfood_train.csv",
12
+ "https://huggingface.co/datasets/hezar-ai/sentiment_digikala_snappfood/blob/main/sentiment_digikala_snappfood_test.csv"
13
+ ]
14
+
15
+
16
+ class SentimentDigikalaSnappfoodConfig(datasets.BuilderConfig):
17
+ """BuilderConfig for SentimentMixedV1"""
18
+
19
+ def __init__(self, **kwargs):
20
+ """BuilderConfig for SentimentMixedV1.
21
+ Args:
22
+ **kwargs: keyword arguments forwarded to super.
23
+ """
24
+ super(SentimentDigikalaSnappfoodConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
25
+
26
+
27
+ class SentimentDigikalaSnappfood(datasets.GeneratorBasedBuilder):
28
+ """Sentiment analysis on Digikala/SnappFood comments"""
29
+
30
+ BUILDER_CONFIGS = [
31
+ SentimentDigikalaSnappfoodConfig(
32
+ name="plain_text",
33
+ description="Plain text",
34
+ )
35
+ ]
36
+
37
+ def _info(self):
38
+ return datasets.DatasetInfo(
39
+ description=_DESCRIPTION,
40
+ features=datasets.Features(
41
+ {"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["negative", "positive", "neutral"])}
42
+ ),
43
+ supervised_keys=None,
44
+ homepage="https://huggingface.co/datasets/hezar-ai/sentiment_digikala_snappfood",
45
+ task_templates=[TextClassification(text_column="text", label_column="label")],
46
+ )
47
+
48
+ def _split_generators(self, dl_manager):
49
+ archive = dl_manager.download(_DOWNLOAD_URLS)
50
+ return [
51
+ datasets.SplitGenerator(
52
+ name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train"}
53
+ ),
54
+ datasets.SplitGenerator(
55
+ name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "test"}
56
+ ),
57
+ ]
58
+
59
+ def _generate_examples(self, filepath):
60
+ """Generate examples."""
61
+ # For labeled examples, extract the label from the path.
62
+ label_mapping = {"negative": 0, "positive": 1, "neutral": 2}
63
+ with open(filepath, encoding="utf-8") as csv_file:
64
+ csv_reader = csv.reader(
65
+ csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
66
+ )
67
+ for id_, row in enumerate(csv_reader):
68
+ text, label = row
69
+ label = label_mapping[label]
70
+ yield id_, {"text": text, "label": label}