Datasets:
hfl
/

Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Chinese
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
738e4c1
·
1 Parent(s): a86590a

Update files from the datasets library (from 1.8.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.8.0

Files changed (3) hide show
  1. README.md +21 -3
  2. cmrc2018.py +6 -0
  3. dataset_infos.json +1 -1
README.md CHANGED
@@ -1,4 +1,22 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  paperswithcode_id: cmrc-2018
3
  ---
4
 
@@ -95,9 +113,9 @@ The data fields are the same among all splits.
95
 
96
  ### Data Splits
97
 
98
- | name |train|validation|test|
99
- |-------|----:|---------:|---:|
100
- |default|10142| 3219|1002|
101
 
102
  ## Dataset Creation
103
 
 
1
  ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - crowdsourced
6
+ languages:
7
+ - zh
8
+ licenses:
9
+ - cc-by-sa-4-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - question-answering
18
+ task_ids:
19
+ - extractive-qa
20
  paperswithcode_id: cmrc-2018
21
  ---
22
 
 
113
 
114
  ### Data Splits
115
 
116
+ | name | train | validation | test |
117
+ | ------- | ----: | ---------: | ---: |
118
+ | default | 10142 | 3219 | 1002 |
119
 
120
  ## Dataset Creation
121
 
cmrc2018.py CHANGED
@@ -4,6 +4,7 @@
4
  import json
5
 
6
  import datasets
 
7
 
8
 
9
  # TODO(cmrc2018): BibTeX citation
@@ -75,6 +76,11 @@ class Cmrc2018(datasets.GeneratorBasedBuilder):
75
  # Homepage of the dataset for documentation
76
  homepage=_URL,
77
  citation=_CITATION,
 
 
 
 
 
78
  )
79
 
80
  def _split_generators(self, dl_manager):
 
4
  import json
5
 
6
  import datasets
7
+ from datasets.tasks import QuestionAnsweringExtractive
8
 
9
 
10
  # TODO(cmrc2018): BibTeX citation
 
76
  # Homepage of the dataset for documentation
77
  homepage=_URL,
78
  citation=_CITATION,
79
+ task_templates=[
80
+ QuestionAnsweringExtractive(
81
+ question_column="question", context_column="context", answers_column="answers"
82
+ )
83
+ ],
84
  )
85
 
86
  def _split_generators(self, dl_manager):
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"default": {"description": "A Span-Extraction dataset for Chinese machine reading comprehension to add language\ndiversities in this area. The dataset is composed by near 20,000 real questions annotated\non Wikipedia paragraphs by human experts. We also annotated a challenge set which\ncontains the questions that need comprehensive understanding and multi-sentence\ninference throughout the context.\n", "citation": "@inproceedings{cui-emnlp2019-cmrc2018,\n title = \"A Span-Extraction Dataset for {C}hinese Machine Reading Comprehension\",\n author = \"Cui, Yiming and\n Liu, Ting and\n Che, Wanxiang and\n Xiao, Li and\n Chen, Zhipeng and\n Ma, Wentao and\n Wang, Shijin and\n Hu, Guoping\",\n booktitle = \"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)\",\n month = nov,\n year = \"2019\",\n address = \"Hong Kong, China\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D19-1600\",\n doi = \"10.18653/v1/D19-1600\",\n pages = \"5886--5891\",\n}\n", "homepage": "https://github.com/ymcui/cmrc2018", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "cmrc2018", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1608065, "num_examples": 1002, "dataset_name": "cmrc2018"}, "train": {"name": "train", "num_bytes": 15519498, "num_examples": 10142, "dataset_name": "cmrc2018"}, "validation": {"name": "validation", "num_bytes": 5189046, "num_examples": 3219, "dataset_name": "cmrc2018"}}, "download_checksums": {"https://worksheets.codalab.org/rest/bundles/0x15022f0c4d3944a599ab27256686b9ac/contents/blob/": {"num_bytes": 7408757, "checksum": "5497aa2f81908e31d6b0e27d99b1f90ab63a8f58fa92fffe5d17cf62eba0c212"}, "https://worksheets.codalab.org/rest/bundles/0x72252619f67b4346a85e122049c3eabd/contents/blob/": {"num_bytes": 3299139, "checksum": "e9ff74231f05c230c6fa88b84441ee334d97234cbb610991cd94b82db00c7f1f"}, "https://worksheets.codalab.org/rest/bundles/0x182c2e71fac94fc2a45cc1a3376879f7/contents/blob/": {"num_bytes": 800221, "checksum": "f3fae95b57da8e03afb2b57467dd221417060ef4d82db13bf22fc88589f3a6f3"}}, "download_size": 11508117, "dataset_size": 22316609, "size_in_bytes": 33824726}}
 
1
+ {"default": {"description": "A Span-Extraction dataset for Chinese machine reading comprehension to add language\ndiversities in this area. The dataset is composed by near 20,000 real questions annotated\non Wikipedia paragraphs by human experts. We also annotated a challenge set which\ncontains the questions that need comprehensive understanding and multi-sentence\ninference throughout the context.\n", "citation": "@inproceedings{cui-emnlp2019-cmrc2018,\n title = {A Span-Extraction Dataset for {C}hinese Machine Reading Comprehension},\n author = {Cui, Yiming and\n Liu, Ting and\n Che, Wanxiang and\n Xiao, Li and\n Chen, Zhipeng and\n Ma, Wentao and\n Wang, Shijin and\n Hu, Guoping},\n booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},\n month = {nov},\n year = {2019},\n address = {Hong Kong, China},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/D19-1600},\n doi = {10.18653/v1/D19-1600},\n pages = {5886--5891}}\n", "homepage": "https://github.com/ymcui/cmrc2018", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "cmrc2018", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 15508110, "num_examples": 10142, "dataset_name": "cmrc2018"}, "validation": {"name": "validation", "num_bytes": 5183809, "num_examples": 3219, "dataset_name": "cmrc2018"}, "test": {"name": "test", "num_bytes": 1606931, "num_examples": 1002, "dataset_name": "cmrc2018"}}, "download_checksums": {"https://worksheets.codalab.org/rest/bundles/0x15022f0c4d3944a599ab27256686b9ac/contents/blob/": {"num_bytes": 7408757, "checksum": "5497aa2f81908e31d6b0e27d99b1f90ab63a8f58fa92fffe5d17cf62eba0c212"}, "https://worksheets.codalab.org/rest/bundles/0x72252619f67b4346a85e122049c3eabd/contents/blob/": {"num_bytes": 3299139, "checksum": "e9ff74231f05c230c6fa88b84441ee334d97234cbb610991cd94b82db00c7f1f"}, "https://worksheets.codalab.org/rest/bundles/0x182c2e71fac94fc2a45cc1a3376879f7/contents/blob/": {"num_bytes": 800221, "checksum": "f3fae95b57da8e03afb2b57467dd221417060ef4d82db13bf22fc88589f3a6f3"}}, "download_size": 11508117, "post_processing_size": null, "dataset_size": 22298850, "size_in_bytes": 33806967}}