Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Chinese
Size:
10K - 100K
License:
Update files from the datasets library (from 1.8.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.8.0
- README.md +21 -3
- cmrc2018.py +6 -0
- dataset_infos.json +1 -1
README.md
CHANGED
@@ -1,4 +1,22 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
paperswithcode_id: cmrc-2018
|
3 |
---
|
4 |
|
@@ -95,9 +113,9 @@ The data fields are the same among all splits.
|
|
95 |
|
96 |
### Data Splits
|
97 |
|
98 |
-
| name
|
99 |
-
|
100 |
-
|default|10142|
|
101 |
|
102 |
## Dataset Creation
|
103 |
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- crowdsourced
|
6 |
+
languages:
|
7 |
+
- zh
|
8 |
+
licenses:
|
9 |
+
- cc-by-sa-4-0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 10K<n<100K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- question-answering
|
18 |
+
task_ids:
|
19 |
+
- extractive-qa
|
20 |
paperswithcode_id: cmrc-2018
|
21 |
---
|
22 |
|
|
|
113 |
|
114 |
### Data Splits
|
115 |
|
116 |
+
| name | train | validation | test |
|
117 |
+
| ------- | ----: | ---------: | ---: |
|
118 |
+
| default | 10142 | 3219 | 1002 |
|
119 |
|
120 |
## Dataset Creation
|
121 |
|
cmrc2018.py
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
import json
|
5 |
|
6 |
import datasets
|
|
|
7 |
|
8 |
|
9 |
# TODO(cmrc2018): BibTeX citation
|
@@ -75,6 +76,11 @@ class Cmrc2018(datasets.GeneratorBasedBuilder):
|
|
75 |
# Homepage of the dataset for documentation
|
76 |
homepage=_URL,
|
77 |
citation=_CITATION,
|
|
|
|
|
|
|
|
|
|
|
78 |
)
|
79 |
|
80 |
def _split_generators(self, dl_manager):
|
|
|
4 |
import json
|
5 |
|
6 |
import datasets
|
7 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
8 |
|
9 |
|
10 |
# TODO(cmrc2018): BibTeX citation
|
|
|
76 |
# Homepage of the dataset for documentation
|
77 |
homepage=_URL,
|
78 |
citation=_CITATION,
|
79 |
+
task_templates=[
|
80 |
+
QuestionAnsweringExtractive(
|
81 |
+
question_column="question", context_column="context", answers_column="answers"
|
82 |
+
)
|
83 |
+
],
|
84 |
)
|
85 |
|
86 |
def _split_generators(self, dl_manager):
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "A Span-Extraction dataset for Chinese machine reading comprehension to add language\ndiversities in this area. The dataset is composed by near 20,000 real questions annotated\non Wikipedia paragraphs by human experts. We also annotated a challenge set which\ncontains the questions that need comprehensive understanding and multi-sentence\ninference throughout the context.\n", "citation": "@inproceedings{cui-emnlp2019-cmrc2018,\n title =
|
|
|
1 |
+
{"default": {"description": "A Span-Extraction dataset for Chinese machine reading comprehension to add language\ndiversities in this area. The dataset is composed by near 20,000 real questions annotated\non Wikipedia paragraphs by human experts. We also annotated a challenge set which\ncontains the questions that need comprehensive understanding and multi-sentence\ninference throughout the context.\n", "citation": "@inproceedings{cui-emnlp2019-cmrc2018,\n title = {A Span-Extraction Dataset for {C}hinese Machine Reading Comprehension},\n author = {Cui, Yiming and\n Liu, Ting and\n Che, Wanxiang and\n Xiao, Li and\n Chen, Zhipeng and\n Ma, Wentao and\n Wang, Shijin and\n Hu, Guoping},\n booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},\n month = {nov},\n year = {2019},\n address = {Hong Kong, China},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/D19-1600},\n doi = {10.18653/v1/D19-1600},\n pages = {5886--5891}}\n", "homepage": "https://github.com/ymcui/cmrc2018", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "cmrc2018", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 15508110, "num_examples": 10142, "dataset_name": "cmrc2018"}, "validation": {"name": "validation", "num_bytes": 5183809, "num_examples": 3219, "dataset_name": "cmrc2018"}, "test": {"name": "test", "num_bytes": 1606931, "num_examples": 1002, "dataset_name": "cmrc2018"}}, "download_checksums": {"https://worksheets.codalab.org/rest/bundles/0x15022f0c4d3944a599ab27256686b9ac/contents/blob/": {"num_bytes": 7408757, "checksum": "5497aa2f81908e31d6b0e27d99b1f90ab63a8f58fa92fffe5d17cf62eba0c212"}, "https://worksheets.codalab.org/rest/bundles/0x72252619f67b4346a85e122049c3eabd/contents/blob/": {"num_bytes": 3299139, "checksum": "e9ff74231f05c230c6fa88b84441ee334d97234cbb610991cd94b82db00c7f1f"}, "https://worksheets.codalab.org/rest/bundles/0x182c2e71fac94fc2a45cc1a3376879f7/contents/blob/": {"num_bytes": 800221, "checksum": "f3fae95b57da8e03afb2b57467dd221417060ef4d82db13bf22fc88589f3a6f3"}}, "download_size": 11508117, "post_processing_size": null, "dataset_size": 22298850, "size_in_bytes": 33806967}}
|