File size: 8,704 Bytes
fe79ef6
9ae8c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe79ef6
9ae8c82
 
 
 
 
 
 
 
 
 
 
 
a3aff80
9ae8c82
 
a3aff80
9ae8c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b08cf4a
 
9ae8c82
 
b08cf4a
 
9ae8c82
 
 
a3aff80
9ae8c82
 
 
a3aff80
 
9ae8c82
 
 
 
 
 
 
 
 
 
a3aff80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae8c82
 
 
a3aff80
9ae8c82
 
 
 
a3aff80
9ae8c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
annotations_creators:
- expert-generated
language:
- ja
- en
language_creators:
- expert-generated
license:
- cc-by-sa-4.0
multilinguality:
- translation
pretty_name: JSICK
size_categories:
- 1K<n<10K
source_datasets:
- extended|sick
tags:
- semantic-textual-similarity
- sts
task_categories:
- sentence-similarity
- text-classification
task_ids:
- natural-language-inference
- semantic-similarity-scoring
---

# Dataset Card for JaNLI

## Table of Contents
- [Dataset Card for JaNLI](#dataset-card-for-janli)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
      - [base](#base)
      - [stress](#stress)
    - [Data Fields](#data-fields)
      - [base](#base-1)
      - [original](#original)
    - [Data Splits](#data-splits)
    - [Annotations](#annotations)
  - [Additional Information](#additional-information)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://github.com/verypluming/JSICK
- **Repository:** https://github.com/verypluming/JSICK
- **Paper:** https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00518/113850/Compositional-Evaluation-on-Japanese-Textual
- **Paper:** https://www.jstage.jst.go.jp/article/pjsai/JSAI2021/0/JSAI2021_4J3GS6f02/_pdf/-char/ja

### Dataset Summary

From official [GitHub](https://github.com/verypluming/JSICK):

Japanese Sentences Involving Compositional Knowledge (JSICK) Dataset.
JSICK is the Japanese NLI and STS dataset by manually translating the English dataset [SICK (Marelli et al., 2014)](https://aclanthology.org/L14-1314/) into Japanese.
We hope that our dataset will be useful in research for realizing more advanced models that are capable of appropriately performing multilingual compositional inference.

### Languages

The language data in JSICK is in Japanese and English.


## Dataset Structure


### Data Instances
When loading a specific configuration, users has to append a version dependent suffix:

```python
import datasets as ds

dataset: ds.DatasetDict = ds.load_dataset("hpprc/jsick")
print(dataset)
# DatasetDict({
#     train: Dataset({
#         features: ['id', 'premise', 'hypothesis', 'label', 'score', 'sentence_A_En', 'sentence_B_En', 'entailment_label_En', 'relatedness_score_En', 'corr_entailment_labelAB_En', 'corr_entailment_labelBA_En', 'image_ID', 'original_caption', 'semtag_short', 'semtag_long'],
#         num_rows: 4500
#     })
#     test: Dataset({
#         features: ['id', 'premise', 'hypothesis', 'label', 'score', 'sentence_A_En', 'sentence_B_En', 'entailment_label_En', 'relatedness_score_En', 'corr_entailment_labelAB_En', 'corr_entailment_labelBA_En', 'image_ID', 'original_caption', 'semtag_short', 'semtag_long'],
#         num_rows: 4927
#     })
# })

dataset: ds.DatasetDict = ds.load_dataset("hpprc/jsick", name="stress")
print(dataset)
# DatasetDict({
#     test: Dataset({
#         features: ['id', 'premise', 'hypothesis', 'label', 'score', 'sentence_A_Ja_origin', 'entailment_label_origin', 'relatedness_score_Ja_origin', 'rephrase_type', 'case_particles'],
#         num_rows: 900
#     })
# })
```


#### base

An example of looks as follows:

```json
{'id': 1,
'premise': '子供たちのグループが庭で遊んでいて、後ろの方には年を取った男性が立っている',
'hypothesis': '庭にいる男の子たちのグループが遊んでいて、男性が後ろの方に立っている',
'label': 1,
'score': 3.700000047683716,
'sentence_A_En': 'A group of kids is playing in a yard and an old man is standing in the background',
'sentence_B_En': 'A group of boys in a yard is playing and a man is standing in the background',
'entailment_label_En': 1,
'relatedness_score_En': 4.5,
'corr_entailment_labelAB_En': 'nan',
'corr_entailment_labelBA_En': 'nan',
'image_ID': '3155657768_b83a7831e5.jpg',
'original_caption': 'A group of children playing in a yard , a man in the background .',
'semtag_short': 'nan',
'semtag_long': 'nan',
}
```

#### stress

An example of looks as follows:

```json
{'id': '5818_de_d', 'premise': '女性火の近くダンスをしている', 'hypothesis': '火の近くでダンスをしている女性は一人もいない', 'label': 2, 'score': 4.0, 'sentence_A_Ja_origin': '女性が火の近くでダンスをしている', 'entailment_label_origin': 2, 'relatedness_score_Ja_origin': 3.700000047683716, 'rephrase_type': 'd', 'case_particles': 'de'}
```

### Data Fields

#### base

A version adopting the column names of a typical NLI dataset.

- `id`: The number of the sentence pair.
- `premise`: The premise (sentence_A_Ja).
- `hypothesis`: The hypothesis (sentence_B_Ja).
- `label`: The correct label for this sentence pair (either `entailment` or `non-entailment`); in the setting described in the paper, non-entailment = neutral + contradiction (entailment_label_Ja).
- `heuristics`: The heuristics (structural pattern) tag. The tags are: subsequence, constituent, full-overlap, order-subset, and mixed-subset.
- `number_of_NPs`: The number of noun phrase in a sentence.
- `semtag`: The linguistic phenomena tag.

#### original

The original version retaining the unaltered column names.

- `id`: The number of the sentence pair.
- `sentence_A_Ja`: The premise.
- `sentence_B_Ja`: The hypothesis.
- `entailment_label_Ja`: The correct label for this sentence pair (either `entailment` or `non-entailment`); in the setting described in the paper, non-entailment = neutral + contradiction
- `heuristics`: The heuristics (structural pattern) tag. The tags are: subsequence, constituent, full-overlap, order-subset, and mixed-subset.
- `number_of_NPs`: The number of noun phrase in a sentence.
- `semtag`: The linguistic phenomena tag.


### Data Splits

| name     |  train | validation | test |
| -------- | -----: | ---------: | ---: |
| base     | 13,680 |            |  720 |
| original | 13,680 |            |  720 |



### Annotations

The annotation process for this Japanese NLI dataset involves tagging each pair (P, H) of a premise and hypothesis with a label for structural pattern and linguistic phenomenon.
The structural relationship between premise and hypothesis sentences is classified into five patterns, with each pattern associated with a type of heuristic that can lead to incorrect predictions of the entailment relation.
Additionally, 11 categories of Japanese linguistic phenomena and constructions are focused on for generating the five patterns of adversarial inferences.

For each linguistic phenomenon, a template for the premise sentence P is fixed, and multiple templates for hypothesis sentences H are created.
In total, 144 templates for (P, H) pairs are produced.
Each pair of premise and hypothesis sentences is tagged with an entailment label (entailment or non-entailment), a structural pattern, and a linguistic phenomenon label.

The JaNLI dataset is generated by instantiating each template 100 times, resulting in a total of 14,400 examples.
The same number of entailment and non-entailment examples are generated for each phenomenon.
The structural patterns are annotated with the templates for each linguistic phenomenon, and the ratio of entailment and non-entailment examples is not necessarily 1:1 for each pattern.
The dataset uses a total of 158 words (nouns and verbs), which occur more than 20 times in the JSICK and JSNLI datasets.


## Additional Information

- [verypluming/JaNLI](https://github.com/verypluming/JaNLI)
- [Hitomi Yanaka, Koji Mineshima, Assessing the Generalization Capacity of Pre-trained Language Models through Japanese Adversarial Natural Language Inference, Proceedings of the 2021 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (BlackboxNLP2021), 2021.](https://aclanthology.org/2021.blackboxnlp-1.26/)

### Licensing Information

CC BY-SA 4.0

### Citation Information

```bibtex
@InProceedings{yanaka-EtAl:2021:blackbox,
  author    = {Yanaka, Hitomi and Mineshima, Koji},
  title     = {Assessing the Generalization Capacity of Pre-trained Language Models through Japanese Adversarial Natural Language Inference},
  booktitle = {Proceedings of the 2021 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (BlackboxNLP2021)},
  url       = {https://aclanthology.org/2021.blackboxnlp-1.26/},
  year      = {2021},
}
```

### Contributions

Thanks to [Hitomi Yanaka](https://hitomiyanaka.mystrikingly.com/) and Koji Mineshima for creating this dataset.