hw-liang ir1d commited on
Commit
61d6c0b
1 Parent(s): 0b36855

Update README.md (#3)

Browse files

- Update README.md (b2f723bfaa7351dd9acf3ff84a44c3b0a7093977)


Co-authored-by: Dejia Xu <[email protected]>

Files changed (1) hide show
  1. README.md +55 -3
README.md CHANGED
@@ -1,3 +1,55 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - text-to-3d
5
+ - image-to-3d
6
+ language:
7
+ - en
8
+ tags:
9
+ - 4d
10
+ - 3d
11
+ - text-to-4d
12
+ - image-to-4d
13
+ size_categories:
14
+ - 1M<n<10M
15
+ ---
16
+
17
+ # Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models
18
+
19
+ [[Project Page]](https://vita-group.github.io/Diffusion4D/) | [[Code]](https://github.com/VITA-Group/Diffusion4D) |
20
+
21
+ ## News
22
+
23
+ - 2024.5.27: Released metadata for objects!
24
+
25
+ ## Overview
26
+
27
+ We collect a large-scale, high-quality dynamic 3D(4D) dataset sourced from the
28
+ vast 3D data corpus of [Objaverse-1.0](https://objaverse.allenai.org/objaverse-1.0/) and [Objaverse-XL](https://github.com/allenai/objaverse-xl). We apply a series of empirical rules to filter the dataset. You can find more details in our paper. In this part, we will release the selected 4D assets, including:
29
+ 1. Selected high-quality 4D object ID.
30
+ 2. A render script using Blender, providing optional settings to render your personalized data.
31
+ 3. (To be uploaded) Rendered 4D images by our team to save your GPU time.
32
+
33
+ ## 4D Dataset ID/Metadata
34
+ We collect 365k dynamic 3D assets from Objaverse-1.0 (42k) and Objaverse-xl (323k). We curate a high-quality subset to train our models. With objaverse-1.0, we provide the selected 11K ids in `rendering/src/ObjV1_curated.txt`. Uncurated 42k IDs of all the animated objects from objaverse-1.0 are in `rendering/src/ObjV1_all_animated.txt`.
35
+
36
+ Metadata of animated objects (323k) from objaverse-xl can be found in [meta_xl_animation_tot.csv](https://huggingface.co/datasets/hw-liang/Diffusion4D/blob/main/meta_xl_animation_tot.csv).
37
+ We also release the metadata of all successfully rendered objects from objaverse-xl's Github subset in [meta_xl_tot.csv](https://huggingface.co/datasets/hw-liang/Diffusion4D/blob/main/meta_xl_tot.csv).
38
+
39
+ For text-to-4D generation, the captions are obtained from the work [Cap3D](https://huggingface.co/datasets/tiange/Cap3D).
40
+ More about the dataset and curation scripts are coming soon!
41
+
42
+
43
+ ## Citation
44
+
45
+ If you find this repository/work/dataset helpful in your research, please consider citing the paper and starring the [repo](https://github.com/VITA-Group/Diffusion4D) ⭐.
46
+
47
+ ```
48
+ @article{liang2024diffusion4d,
49
+ title={Diffusion4D: Fast Spatial-temporal Consistent
50
+ 4D Generation via Video Diffusion Models},
51
+ author={},
52
+ journal={arXiv preprint arXiv:},
53
+ year={2024}
54
+ }
55
+ ```