Update README.md (#3)
Browse files- Update README.md (b2f723bfaa7351dd9acf3ff84a44c3b0a7093977)
Co-authored-by: Dejia Xu <[email protected]>
README.md
CHANGED
@@ -1,3 +1,55 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
task_categories:
|
4 |
+
- text-to-3d
|
5 |
+
- image-to-3d
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
tags:
|
9 |
+
- 4d
|
10 |
+
- 3d
|
11 |
+
- text-to-4d
|
12 |
+
- image-to-4d
|
13 |
+
size_categories:
|
14 |
+
- 1M<n<10M
|
15 |
+
---
|
16 |
+
|
17 |
+
# Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models
|
18 |
+
|
19 |
+
[[Project Page]](https://vita-group.github.io/Diffusion4D/) | [[Code]](https://github.com/VITA-Group/Diffusion4D) |
|
20 |
+
|
21 |
+
## News
|
22 |
+
|
23 |
+
- 2024.5.27: Released metadata for objects!
|
24 |
+
|
25 |
+
## Overview
|
26 |
+
|
27 |
+
We collect a large-scale, high-quality dynamic 3D(4D) dataset sourced from the
|
28 |
+
vast 3D data corpus of [Objaverse-1.0](https://objaverse.allenai.org/objaverse-1.0/) and [Objaverse-XL](https://github.com/allenai/objaverse-xl). We apply a series of empirical rules to filter the dataset. You can find more details in our paper. In this part, we will release the selected 4D assets, including:
|
29 |
+
1. Selected high-quality 4D object ID.
|
30 |
+
2. A render script using Blender, providing optional settings to render your personalized data.
|
31 |
+
3. (To be uploaded) Rendered 4D images by our team to save your GPU time.
|
32 |
+
|
33 |
+
## 4D Dataset ID/Metadata
|
34 |
+
We collect 365k dynamic 3D assets from Objaverse-1.0 (42k) and Objaverse-xl (323k). We curate a high-quality subset to train our models. With objaverse-1.0, we provide the selected 11K ids in `rendering/src/ObjV1_curated.txt`. Uncurated 42k IDs of all the animated objects from objaverse-1.0 are in `rendering/src/ObjV1_all_animated.txt`.
|
35 |
+
|
36 |
+
Metadata of animated objects (323k) from objaverse-xl can be found in [meta_xl_animation_tot.csv](https://huggingface.co/datasets/hw-liang/Diffusion4D/blob/main/meta_xl_animation_tot.csv).
|
37 |
+
We also release the metadata of all successfully rendered objects from objaverse-xl's Github subset in [meta_xl_tot.csv](https://huggingface.co/datasets/hw-liang/Diffusion4D/blob/main/meta_xl_tot.csv).
|
38 |
+
|
39 |
+
For text-to-4D generation, the captions are obtained from the work [Cap3D](https://huggingface.co/datasets/tiange/Cap3D).
|
40 |
+
More about the dataset and curation scripts are coming soon!
|
41 |
+
|
42 |
+
|
43 |
+
## Citation
|
44 |
+
|
45 |
+
If you find this repository/work/dataset helpful in your research, please consider citing the paper and starring the [repo](https://github.com/VITA-Group/Diffusion4D) ⭐.
|
46 |
+
|
47 |
+
```
|
48 |
+
@article{liang2024diffusion4d,
|
49 |
+
title={Diffusion4D: Fast Spatial-temporal Consistent
|
50 |
+
4D Generation via Video Diffusion Models},
|
51 |
+
author={},
|
52 |
+
journal={arXiv preprint arXiv:},
|
53 |
+
year={2024}
|
54 |
+
}
|
55 |
+
```
|