Datasets:
File size: 11,901 Bytes
53a4619 c284888 ad41487 a46887f ad41487 a46887f ad41487 16d2c81 52222c2 16d2c81 4c4aeb2 713f8a9 b29d86e 52222c2 16d2c81 4c4aeb2 713f8a9 b29d86e 52222c2 ad41487 53a4619 c284888 a46887f c284888 fb693b7 029c58a c284888 4e881bd c284888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
---
license: cc-by-nc-sa-4.0
tags:
- croissant
- idrama-lab
- social-media
- web-communities
- scored-platform
- reddit
- sentence-embedding
pretty_name: idrama-scored-2024
source_datasets:
- original
dataset_info:
- config_name: comments-2020
features:
- name: uuid
dtype: string
- name: score
dtype: int64
- name: created
dtype: int64
- name: score_up
dtype: int64
- name: community
dtype: string
- name: is_deleted
dtype: bool
- name: score_down
dtype: int64
- name: raw_content
dtype: string
- name: is_moderator
dtype: bool
- name: date
dtype: string
- name: author
dtype: string
- name: embedding
sequence: float32
splits:
- name: train
num_bytes: 31046054383
num_examples: 12774203
download_size: 37704189521
dataset_size: 31046054383
- config_name: comments-2021
features:
- name: uuid
dtype: string
- name: score
dtype: int64
- name: created
dtype: int64
- name: score_up
dtype: int64
- name: community
dtype: string
- name: is_deleted
dtype: bool
- name: score_down
dtype: int64
- name: raw_content
dtype: string
- name: is_moderator
dtype: bool
- name: date
dtype: timestamp[ns]
- name: author
dtype: string
- name: embedding
sequence: float32
splits:
- name: train
num_bytes: 40987707754
num_examples: 16097941
download_size: 48643801377
dataset_size: 40987707754
- config_name: comments-2022
features:
- name: uuid
dtype: string
- name: score
dtype: int64
- name: created
dtype: int64
- name: score_up
dtype: int64
- name: community
dtype: string
- name: is_deleted
dtype: bool
- name: score_down
dtype: int64
- name: raw_content
dtype: string
- name: is_moderator
dtype: bool
- name: date
dtype: timestamp[ns]
- name: author
dtype: string
- name: embedding
sequence: float32
splits:
- name: train
num_bytes: 40428423985
num_examples: 12730301
download_size: 46891480349
dataset_size: 40428423985
- config_name: comments-2023
features:
- name: uuid
dtype: string
- name: score
dtype: int64
- name: created
dtype: int64
- name: score_up
dtype: int64
- name: community
dtype: string
- name: is_deleted
dtype: bool
- name: score_down
dtype: int64
- name: raw_content
dtype: string
- name: is_moderator
dtype: bool
- name: date
dtype: timestamp[ns]
- name: author
dtype: string
- name: embedding
sequence: float32
splits:
- name: train
num_bytes: 28954472165
num_examples: 8919159
download_size: 33452541163
dataset_size: 28954472165
- config_name: submissions-2020-to-2023
features:
- name: link
dtype: string
- name: type
dtype: string
- name: uuid
dtype: string
- name: score
dtype: int64
- name: title
dtype: string
- name: domain
dtype: string
- name: created
dtype: int64
- name: is_nsfw
dtype: bool
- name: is_admin
dtype: bool
- name: is_image
dtype: bool
- name: is_video
dtype: bool
- name: score_up
dtype: int64
- name: tweet_id
dtype: string
- name: community
dtype: string
- name: is_deleted
dtype: bool
- name: is_twitter
dtype: bool
- name: score_down
dtype: int64
- name: video_link
dtype: string
- name: raw_content
dtype: string
- name: is_moderator
dtype: bool
- name: post_flair_text
dtype: string
- name: post_flair_class
dtype: string
- name: date
dtype: timestamp[ns]
- name: author
dtype: string
- name: embedding
sequence: float32
splits:
- name: train
num_bytes: 17187529594
num_examples: 6293980
download_size: 20010835367
dataset_size: 17187529594
configs:
- config_name: comments-2020
data_files:
- split: train
path: comments-2020/train-*
- config_name: comments-2021
data_files:
- split: train
path: comments-2021/train-*
- config_name: comments-2022
data_files:
- split: train
path: comments-2022/train-*
- config_name: comments-2023
data_files:
- split: train
path: comments-2023/train-*
- config_name: submissions-2020-to-2023
data_files:
- split: train
path: submissions-2020-to-2023/train-*
size_categories:
- 10M<n<100M
---
![iDRAMA-Scored-2024 Header](https://huggingface.co/datasets/iDRAMALab/iDRAMA-scored-2024/resolve/main/idrama-scored-2024-banner-orig.png?download=true)
# Dataset Summary
`iDRAMA-Scored-2024` is a large-scale dataset containing approximately 57 million social media posts from web communities on social media platform, Scored.
Scored serves as an alternative to Reddit, hosting banned fringe communities, for example, c/TheDonald, a prominent right-wing community, and c/GreatAwakening, a conspiratorial community.
This dataset contains 57M posts from over 950 communities collected over four years, and includes sentence embeddings for all posts.
- **Scored platform:** [Scored](https://scored.co)
- **Link to paper:** [Here](https://arxiv.org/abs/2405.10233)
- **License:** [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
| Repo-links | Purpose |
|:------|:--------------|
| [Zenodo](https://zenodo.org/records/10516043) | From Zenodo, researchers can download `lite` version of this dataset, which includes only 57M posts from Scored (not the sentence embeddings). |
| [Github](https://github.com/idramalab/iDRAMA-scored-2024) | The main repository of this dataset, where we provide code-snippets to get started with this dataset. |
| [Huggingface](https://hf.co/datasets/iDRAMALab/iDRAMA-scored-2024) | On Huggingface, we provide complete dataset with senetence embeddings. |
# Quick start with Datasets
Install `Datasets` module by `pip install datasets` and then use the following code:
```python
from datasets import load_dataset
# Download & Load complete dataset
dataset = load_dataset("iDRAMALab/iDRAMA-scored-2024")
# Load dataset with specific config
dataset = load_dataset("iDRAMALab/iDRAMA-scored-2024", name="comments-2020")
```
> More code-snippets to load the different variant of datasets efficiently are available on [Github](https://github.com/idramalab/iDRAMA-scored-2024) rpository.
# Dataset Info
Dataset is organized by yealry-comments and submissions -- comments-2020, comments-2021, comments-2022, comments-2023, submissions-2020-t0-2023.
<table style="width:50%">
<tr>
<th style="text-align:left">Config</th>
<th style="text-align:left">Data-points</th>
</tr>
<tr>
<td>comments-2020</td>
<td>12,774,203</td>
</tr>
<tr>
<td>comments-2021</td>
<td>16,097,941</td>
</tr>
<tr>
<td>comments-2022</td>
<td>12,730,301</td>
</tr>
<tr>
<td>comments-2023</td>
<td>8,919,159</td>
</tr>
<tr>
<td>submissions-2020-to-2023</td>
<td>6,293,980</td>
</tr>
</table>
<details>
<summary> <b> Top-15 communities in our dataset with total number of posts are shown as following: </b> </summary>
| Community | Number of posts |
|:------------|:---------------|
| c/TheDonald | 41,745,699 |
| c/GreatAwakening | 6,161,369 |
| c/IP2Always | 3,154,741 |
| c/ConsumeProduct | 2,263,060 |
| c/KotakuInAction2 | 747,215 |
| c/Conspiracies | 539,164 |
| c/Funny | 371,081 |
| c/NoNewNormal | 322,300 |
| c/OmegaCanada | 249,316 |
| c/Gaming | 181,469 |
| c/MGTOW | 175,853 |
| c/Christianity | 124,866 |
| c/Shithole | 98,720 |
| c/WSBets | 66,358 |
| c/AskWin | 39,308 |
</details>
<details>
<summary> <b> Submission data fields are as following: </b> </summary>
```yaml
- `uuid`: Unique identifier associated with each sub- mission (uuid).
- `created`: UTC timestamp of the submission posted to Scored platform.
- `date`: Date of the submission, converted from UTC timestamp while data curation.
- `author`: User of the submission. (Note -- We hash the userames for ethical considerations.)
- `community`: Name of the community in which the submission is posted to.
- `title`: Title of the submission.
- `raw_content`: Body of the submission.
- `embedding`: Generated embedding by combining "title" and "raw_content," with 768 dimensional vector with fp32-bit.
- `link`: URL if the submission is a link.
- `type`: Indicates whether the submission is text or a link.
- `domain`: Base domain if the submission is a link.
- `tweet_id`: Associated tweet id if the submission is a Twitter link.
- `video_link`: Associated video link if the submission is a video.
- `score`: Metric about the score of sample submission.
- `score_up`: Metric about the up-votes casted to sample submission.
- `score_down`: Metric about the down-votes casted to sample submission.
- `is_moderator`: Whether the submission is created by moderator or not.
- `is_nsfw`: True, if the submission is flagged not safe for work.
- `is_admin`: Boolean flag about whether the submission is posted by admin.
- `is_image`: Boolean flag if the submission is image type of media.
- `is_video`: Boolean flag if the submission is type of video.
- `is_twitter`: Boolean flag if the submission is a twitter (now, named as X) link.
- `is_deleted`: Whether the submission was deleted as a moderation measure or not. If yes, the "title" and "raw_content" could be empty string.
- `post_flair_text` & `post_flair_class`: Similar to Reddit submission flairs, which is a way to tag a submission with a certain keywords.
```
</details>
<details>
<summary> <b> Comments data fields are as following: </b> </summary>
```yaml
- `uuid`
- `date`
- `author`
- `community`
- `raw_content`
- `created`
- `embedding`
- `score`
- `score_up`
- `score_down`
- `is_moderator`
- `is_deleted`
```
</details>
> Read more about the fields and methodology from the [paper](https://arxiv.org/abs/2405.10233).
### Dataset fields Nullability:
- If field (column) doesn't have a value, the fields are left with an empty value.
- For instance, in the case of post deletion as a moderation measure, `title` of submission can have no value.
- We do not explicit mark value as "Null" for any of the column in our dataset except `embedding` column.
- Only, embedding column contains explicit "Null" value.
For eliminating empty records using `pandas`, the code looks like below:
```python
# Load dataset for `comments-2020` config
dataset = load_dataset("iDRAMALab/iDRAMA-scored-2024", name="comments-2020")
pd_df = dataset["train"].to_pandas()
# Remove all empty records based on empty `title` column
pd_df = pdf_df[pd_df.title != ""]
# Remove all records which do not have `author` information
pd_df = pdf_df[pd_df.author != ""]
# Remove all records which do not have generated embeddings
pd_df = pdf_df[~pd_df.embedding.isna()]
```
# Version
- **Maintenance Status:** Active
- **Version Details:**
- *Current Version:* v1.0.0
- *First Release:* 05/16/2024
- *Last Update:* 05/16/2024
# Authorship
This dataset is published at "AAAI ICWSM 2024 (INTERNATIONAL AAAI CONFERENCE ON WEB AND SOCIAL MEDIA)" hosted at Buffalo, NY, USA.
- **Academic Organization:** [iDRAMA Lab](https://idrama.science/people/)
- **Affiliation:** Binghamton University, Boston University, University of California Riverside
# Licensing
This dataset is available for free to use under terms of the non-commercial license [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
# Citation
```bibtex
@inproceedings{patel2024idrama,
title={iDRAMA-Scored-2024: A Dataset of the Scored Social Media Platform from 2020 to 2023},
author={Patel, Jay and Paudel, Pujan and De Cristofaro, Emiliano and Stringhini, Gianluca and Blackburn, Jeremy},
booktitle={Proceedings of the International AAAI Conference on Web and Social Media},
volume={18},
pages={2014--2024},
year={2024},
issn = {2334-0770},
doi = {10.1609/icwsm.v18i1.31444},
}
``` |