File size: 9,182 Bytes
17c2226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d6c03
17c2226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6974665
 
 
 
17c2226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6974665
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from pathlib import Path
from typing import Dict, List, Tuple
import re


import datasets
import pandas as pd

from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import DEFAULT_NUSANTARA_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks

_DATASETNAME = "nusatranslation_mt"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME

_LANGUAGES = ["ind", "abs", "btk", "bew", "bhp", "jav", "mad", "mak", "min", "mui", "rej", "sun"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False

_CITATION = """\
    @unpublished{anonymous2023nusawrites:,
    title={NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages},
    author={Anonymous},
    journal={OpenReview Preprint},
    year={2023},
    note={anonymous preprint under review}
    }
    """

_DESCRIPTION = """\
    Democratizing access to natural language processing (NLP) technology is crucial, especially for underrepresented and extremely low-resource languages. Previous research has focused on developing labeled and unlabeled corpora for these languages through online scraping and document translation. While these methods have proven effective and cost-efficient, we have identified limitations in the resulting corpora, including a lack of lexical diversity and cultural relevance to local communities. To address this gap, we conduct a case study on Indonesian local languages. We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets. Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content. In addition, we present the NusaWrites benchmark, encompassing 12 underrepresented and extremely low-resource languages spoken by millions of individuals in Indonesia. Our empirical experiment results using existing multilingual large language models conclude the need to extend these models to more underrepresented languages.
    We introduce a novel high quality human curated corpora, i.e., NusaMenulis, which covers 12 languages spoken in Indonesia. The resource extend the coverage of languages to 5 new languages, i.e., Ambon (abs), Bima (bhp), Makassarese (mak), Palembang / Musi (mui), and Rejang (rej).
    For the rhetoric mode classification task, we cover 5 rhetoric modes, i.e., narrative, persuasive, argumentative, descriptive, and expository.
"""

_HOMEPAGE = "https://github.com/IndoNLP/nusatranslation/tree/main/datasets/mt"

_LICENSE = "Creative Commons Attribution Share-Alike 4.0 International"

_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]

_SOURCE_VERSION = "1.0.0"

_NUSANTARA_VERSION = "1.0.0"

_URLS = {
    "train": "https://raw.githubusercontent.com/IndoNLP/nusa-writes/main/data/nusa_kalimat-mt-{lang}-train.csv",
    "validation": "https://raw.githubusercontent.com/IndoNLP/nusa-writes/main/data/nusa_kalimat-mt-{lang}-valid.csv",
    "test": "https://raw.githubusercontent.com/IndoNLP/nusa-writes/main/data/nusa_kalimat-mt-{lang}-test.csv",
}

LANGUAGES_MAP = {
    "abs": "ambon",
    "btk": "batak",
    "bew": "betawi",
    "bhp": "bima",
    "jav": "javanese",
    "mad": "madurese",
    "mak": "makassarese",
    "min": "minangkabau",
    "mui": "musi",
    "rej": "rejang",
    "sun": "sundanese",
}


class NusaTranslationMT(datasets.GeneratorBasedBuilder):
    """NusaTranslation-MT is a parallel corpus for training and benchmarking machine translation models from 11 Indonesian local language to Bahasa Indonesia. The data is presented in csv format with 2 columns, where one column contain sentence in Bahasa and another in the local language."""

    BUILDER_CONFIGS = (
        [
            NusantaraConfig(
                name=f"nusatranslation_mt_ind_{subset}_source",
                version=datasets.Version(_SOURCE_VERSION),
                description=f"nusatranslation_mt ind2{subset} source schema",
                schema="source",
                subset_id=f"nusatranslation_mt",
            )
            for subset in _LANGUAGES[1:]
        ]
        + [
            NusantaraConfig(
                name=f"nusatranslation_mt_ind_{subset}_nusantara_t2t",
                version=datasets.Version(_NUSANTARA_VERSION),
                description=f"nusatranslation_mt ind2{subset} Nusantara schema",
                schema="nusantara_t2t",
                subset_id=f"nusatranslation_mt",
            )
            for subset in _LANGUAGES[1:]
        ]
        + [
            NusantaraConfig(
                name=f"nusatranslation_mt_{subset}_ind_source",
                version=datasets.Version(_SOURCE_VERSION),
                description=f"nusatranslation_mt {subset}2ind source schema",
                schema="source",
                subset_id=f"nusatranslation_mt",
            )
            for subset in _LANGUAGES[1:]
        ]
        + [
            NusantaraConfig(
                name=f"nusatranslation_mt_{subset}_ind_nusantara_t2t",
                version=datasets.Version(_NUSANTARA_VERSION),
                description=f"nusatranslation_mt {subset}2ind Nusantara schema",
                schema="nusantara_t2t",
                subset_id=f"nusatranslation_mt",
            )
            for subset in _LANGUAGES[1:]
        ]
    )

    DEFAULT_CONFIG_NAME = "nusatranslation_mt_jav_ind_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Value("string")})
        elif self.config.schema == "nusantara_t2t":
            features = schemas.text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        lang = self.config.name.split("_")[2] if self.config.name.split("_")[2] != "ind" else self.config.name.split("_")[3]
        train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"].format(lang=lang)))
        validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"].format(lang=lang)))
        test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"].format(lang=lang)))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": train_csv_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": validation_csv_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": test_csv_path},
            ),
        ]

    def _merge_subsets(self, df, subsets, revert=False):
        if not subsets:
            return None
        # df = None
        # print(dfs)
        # print(subsets)
        orig_columns = df.columns.tolist()
        print(df.columns)

        df.columns = orig_columns[:1] + ["label", "text"] if revert else orig_columns[:1] + ["text", "label"]
        return df

    def get_domain_data(self, dfs):
        domain = self.config.name
        matched_domain = re.findall(r"nusatranslation_mt_.*?_.*?_", domain)

        assert len(matched_domain) == 1
        domain = matched_domain[0][:-1].replace("nusatranslation_mt_", "").split("_")
        src_lang, tgt_lang = domain[0], domain[1]

        subsets = LANGUAGES_MAP.get(src_lang if src_lang != "ind" else tgt_lang, None)
        return src_lang, tgt_lang, self._merge_subsets(dfs, subsets, revert=(src_lang != "ind"))

    def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
        if self.config.schema != "source" and self.config.schema != "nusantara_t2t":
            raise ValueError(f"Invalid config schema: {self.config.schema}")

        # print(filepath)
        df = pd.read_csv(filepath)
        # ldf = []
        # for fp in filepath:
        #     ldf.append(pd.read_csv(fp))
        src_lang, tgt_lang, df = self.get_domain_data((df))

        if self.config.schema == "source":
            for idx, row in enumerate(df.itertuples()):
                ex = {
                    "id": str(idx),
                    "text": row.text,
                    "label": row.label,
                }
                yield idx, ex

        elif self.config.schema == "nusantara_t2t":
            for idx, row in enumerate(df.itertuples()):
                ex = {
                    "id": str(idx),
                    "text_1": row.text,
                    "text_2": row.label,
                    "text_1_name": src_lang,
                    "text_2_name": tgt_lang,
                }
                yield idx, ex
        else:
            raise ValueError(f"Invalid config: {self.config.name}")