File size: 1,981 Bytes
e6fa05f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
"""
""" # TODO
try:
import ir_datasets
except ImportError as e:
raise ImportError('ir-datasets package missing; `pip install ir-datasets`')
import datasets
IRDS_ID = 'codec/history'
IRDS_ENTITY_TYPES = {'queries': {'query_id': 'string', 'query': 'string', 'domain': 'string', 'guidelines': 'string'}, 'qrels': {'query_id': 'string', 'doc_id': 'string', 'relevance': 'int64'}}
_CITATION = '@inproceedings{mackie2022codec,\n title={CODEC: Complex Document and Entity Collection},\n author={Mackie, Iain and Owoicho, Paul and Gemmell, Carlos and Fischer, Sophie and MacAvaney, Sean and Dalton, Jeffery},\n booktitle={Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval},\n year={2022}\n}'
_DESCRIPTION = "" # TODO
class codec_history(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}),
homepage=f"https://ir-datasets.com/codec#codec/history",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [datasets.SplitGenerator(name=self.config.name)]
def _generate_examples(self):
dataset = ir_datasets.load(IRDS_ID)
for i, item in enumerate(getattr(dataset, self.config.name)):
key = i
if self.config.name == 'docs':
key = item.doc_id
elif self.config.name == 'queries':
key = item.query_id
yield key, item._asdict()
def as_dataset(self, split=None, *args, **kwargs):
split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer
return super().as_dataset(split, *args, **kwargs)
|