Datasets:
irfan-ahmad
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,12 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
dataset_info:
|
3 |
features:
|
4 |
- name: review
|
@@ -10,14 +18,76 @@ dataset_info:
|
|
10 |
- name: sentiment
|
11 |
dtype: string
|
12 |
splits:
|
13 |
-
- name:
|
14 |
num_bytes: 4936876
|
15 |
num_examples: 29700
|
16 |
download_size: 2137765
|
17 |
dataset_size: 4936876
|
18 |
configs:
|
19 |
- config_name: default
|
20 |
-
|
21 |
-
- split: train
|
22 |
-
path: data/train-*
|
23 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ar
|
4 |
+
tags:
|
5 |
+
- sentiment-classification
|
6 |
+
- arabic
|
7 |
+
- app-reviews
|
8 |
+
- text-classification
|
9 |
+
- nlp
|
10 |
dataset_info:
|
11 |
features:
|
12 |
- name: review
|
|
|
18 |
- name: sentiment
|
19 |
dtype: string
|
20 |
splits:
|
21 |
+
- name: full_dataset
|
22 |
num_bytes: 4936876
|
23 |
num_examples: 29700
|
24 |
download_size: 2137765
|
25 |
dataset_size: 4936876
|
26 |
configs:
|
27 |
- config_name: default
|
28 |
+
license: mit
|
|
|
|
|
29 |
---
|
30 |
+
|
31 |
+
# AURA-Sentiment
|
32 |
+
|
33 |
+
## Dataset Description
|
34 |
+
|
35 |
+
The AURA Sentiment Dataset is a collection of 29,700 app reviews in Arabic from iOS and Android platforms. Each review is labeled with a sentiment class, enabling researchers and practitioners to develop and evaluate sentiment analysis models tailored to the Arabic language.
|
36 |
+
### Features
|
37 |
+
|
38 |
+
The dataset includes the following columns:
|
39 |
+
- **review**: The text of the app review in Arabic.
|
40 |
+
- **appName**: The name of the application reviewed.
|
41 |
+
- **platform**: The platform from which the review was posted (iOS or Android).
|
42 |
+
- **sentiment**: The sentiment label assigned to the review:
|
43 |
+
- `positive`
|
44 |
+
- `negative`
|
45 |
+
|
46 |
+
### Dataset Statistics
|
47 |
+
- **Total Reviews**: 29,700
|
48 |
+
- **Platforms**: iOS and Android
|
49 |
+
- **Applications**: Multiple apps spanning various categories.
|
50 |
+
- **Sentiment Distribution**: Balanced between positive and negative reviews.
|
51 |
+
|
52 |
+
### Example Rows
|
53 |
+
| review | appName | platform | sentiment |
|
54 |
+
|---------------------------------------------------------------------------------------------------------|------------------------------------------|----------|-----------|
|
55 |
+
| جميل بس ليه فلوس انا ماعندي | ﺷﺎﻫﺪ - Shahid | android | positive |
|
56 |
+
| التطبيق السابق افضل | ALKAHRABA | android | negative |
|
57 |
+
| تطبيق لا يستحق ولا نجمه انا عندي واجبات مايطلعه وإذا رحت قوقل القى الواجب بعدين اروح اشوف في التطبيق... | مدرستي | android | negative |
|
58 |
+
| بعد التحديث الاخير لا أستطيع تسجيل الدخول ارجو حلها على الفور | State of Survival: Zombie War | ios | negative |
|
59 |
+
| لعبه جميله جدا | State of Survival: Survive the Zombie... | android | positive |
|
60 |
+
|
61 |
+
### Use Cases
|
62 |
+
This dataset is suitable for:
|
63 |
+
- Sentiment classification in Arabic-language text.
|
64 |
+
- Developing and fine-tuning sentiment analysis models for app reviews.
|
65 |
+
- Studying user feedback trends on mobile applications in Arabic-speaking regions.
|
66 |
+
- Multilingual NLP research focused on sentiment tasks.
|
67 |
+
|
68 |
+
### Citation
|
69 |
+
If you use this dataset, please cite it as follows:
|
70 |
+
|
71 |
+
```
|
72 |
+
@article{Aljeezani2025arabic,
|
73 |
+
title={Arabic App Reviews: Analysis and Classification},
|
74 |
+
author={Aljeezani, Othman and Alomari, Dorieh and Ahmad, Irfan},
|
75 |
+
journal={ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)},
|
76 |
+
pages={1--28},
|
77 |
+
year={to-appear},
|
78 |
+
publisher={ACM New York, NY, USA},
|
79 |
+
}
|
80 |
+
```
|
81 |
+
|
82 |
+
## License
|
83 |
+
|
84 |
+
This dataset is shared under the [MIT License](https://opensource.org/licenses/MIT). Please ensure appropriate attribution when using this dataset.
|
85 |
+
|
86 |
+
## Acknowledgments
|
87 |
+
|
88 |
+
Special thanks to the contributors and reviewers who made this dataset possible.
|
89 |
+
|
90 |
+
## Contact
|
91 |
+
|
92 |
+
For questions or feedback, please reach out to the corresponding author (Irfan Ahmad).
|
93 |
+
|