irfan-ahmad commited on
Commit
5e3e345
·
verified ·
1 Parent(s): 46751f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -4
README.md CHANGED
@@ -1,4 +1,12 @@
1
  ---
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: review
@@ -10,14 +18,76 @@ dataset_info:
10
  - name: sentiment
11
  dtype: string
12
  splits:
13
- - name: train
14
  num_bytes: 4936876
15
  num_examples: 29700
16
  download_size: 2137765
17
  dataset_size: 4936876
18
  configs:
19
  - config_name: default
20
- data_files:
21
- - split: train
22
- path: data/train-*
23
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ar
4
+ tags:
5
+ - sentiment-classification
6
+ - arabic
7
+ - app-reviews
8
+ - text-classification
9
+ - nlp
10
  dataset_info:
11
  features:
12
  - name: review
 
18
  - name: sentiment
19
  dtype: string
20
  splits:
21
+ - name: full_dataset
22
  num_bytes: 4936876
23
  num_examples: 29700
24
  download_size: 2137765
25
  dataset_size: 4936876
26
  configs:
27
  - config_name: default
28
+ license: mit
 
 
29
  ---
30
+
31
+ # AURA-Sentiment
32
+
33
+ ## Dataset Description
34
+
35
+ The AURA Sentiment Dataset is a collection of 29,700 app reviews in Arabic from iOS and Android platforms. Each review is labeled with a sentiment class, enabling researchers and practitioners to develop and evaluate sentiment analysis models tailored to the Arabic language.
36
+ ### Features
37
+
38
+ The dataset includes the following columns:
39
+ - **review**: The text of the app review in Arabic.
40
+ - **appName**: The name of the application reviewed.
41
+ - **platform**: The platform from which the review was posted (iOS or Android).
42
+ - **sentiment**: The sentiment label assigned to the review:
43
+ - `positive`
44
+ - `negative`
45
+
46
+ ### Dataset Statistics
47
+ - **Total Reviews**: 29,700
48
+ - **Platforms**: iOS and Android
49
+ - **Applications**: Multiple apps spanning various categories.
50
+ - **Sentiment Distribution**: Balanced between positive and negative reviews.
51
+
52
+ ### Example Rows
53
+ | review | appName | platform | sentiment |
54
+ |---------------------------------------------------------------------------------------------------------|------------------------------------------|----------|-----------|
55
+ | جميل بس ليه فلوس انا ماعندي | ﺷﺎﻫﺪ - Shahid | android | positive |
56
+ | التطبيق السابق افضل | ALKAHRABA | android | negative |
57
+ | تطبيق لا يستحق ولا نجمه انا عندي واجبات مايطلعه وإذا رحت قوقل القى الواجب بعدين اروح اشوف في التطبيق... | مدرستي | android | negative |
58
+ | بعد التحديث الاخير لا أستطيع تسجيل الدخول ارجو حلها على الفور | State of Survival: Zombie War | ios | negative |
59
+ | لعبه جميله جدا | State of Survival: Survive the Zombie... | android | positive |
60
+
61
+ ### Use Cases
62
+ This dataset is suitable for:
63
+ - Sentiment classification in Arabic-language text.
64
+ - Developing and fine-tuning sentiment analysis models for app reviews.
65
+ - Studying user feedback trends on mobile applications in Arabic-speaking regions.
66
+ - Multilingual NLP research focused on sentiment tasks.
67
+
68
+ ### Citation
69
+ If you use this dataset, please cite it as follows:
70
+
71
+ ```
72
+ @article{Aljeezani2025arabic,
73
+ title={Arabic App Reviews: Analysis and Classification},
74
+ author={Aljeezani, Othman and Alomari, Dorieh and Ahmad, Irfan},
75
+ journal={ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)},
76
+ pages={1--28},
77
+ year={to-appear},
78
+ publisher={ACM New York, NY, USA},
79
+ }
80
+ ```
81
+
82
+ ## License
83
+
84
+ This dataset is shared under the [MIT License](https://opensource.org/licenses/MIT). Please ensure appropriate attribution when using this dataset.
85
+
86
+ ## Acknowledgments
87
+
88
+ Special thanks to the contributors and reviewers who made this dataset possible.
89
+
90
+ ## Contact
91
+
92
+ For questions or feedback, please reach out to the corresponding author (Irfan Ahmad).
93
+