jglaser
commited on
Commit
·
4e3b836
0
Parent(s):
Add README.md, notebooks and preprocessing scripts
Browse files- README.md +61 -0
- bindingdb.ipynb +791 -0
- biolip.ipynb +460 -0
- biolip.py +41 -0
- combine_dbs.ipynb +1477 -0
- moad.ipynb +513 -0
- moad.py +32 -0
- pdbbind.ipynb +296 -0
- pdbbind.py +35 -0
- requirements.txt +3 -0
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## How to use the data sets
|
2 |
+
|
3 |
+
### Use the already preprocessed data
|
4 |
+
|
5 |
+
The file `data/all.parquet` contains the preprocessed data
|
6 |
+
|
7 |
+
### Pre-process yourself
|
8 |
+
|
9 |
+
To manually perform the preprocessing, fownload the data sets from
|
10 |
+
|
11 |
+
1. BindingDB
|
12 |
+
|
13 |
+
In `bindingdb`, download the database as tab separated values
|
14 |
+
[https://bindingdb.org] > Download > BindingDB_All_2021m4.tsv.zip
|
15 |
+
and extract the zip archive into `bindingdb/data`
|
16 |
+
|
17 |
+
Run the steps in `bindingdb.ipynb`
|
18 |
+
|
19 |
+
2. PDBBind-cn
|
20 |
+
|
21 |
+
Register for an account at [https://www.pdbbind.org.cn/], confirm the validation
|
22 |
+
email, then login and download
|
23 |
+
|
24 |
+
- the Index files (1)
|
25 |
+
- the general protein-ligand complexes (2)
|
26 |
+
- the refined protein-ligand complexes (3)
|
27 |
+
|
28 |
+
Extract those files in `pdbbind/data`
|
29 |
+
|
30 |
+
Run the script `pdbbind.py` in a compute job on an MPI-enabled cluster
|
31 |
+
(e.g., `mpirun -n 64 pdbbind.py`).
|
32 |
+
|
33 |
+
Perform the steps in the notebook `pdbbind.ipynb`
|
34 |
+
|
35 |
+
3. BindingMOAD
|
36 |
+
|
37 |
+
Go to [https://bindingmoad.org] and download the files `every.csv`
|
38 |
+
(All of Binding MOAD, Binding Data) and the non-redundant biounits
|
39 |
+
(`nr_bind.zip`). Place and extract those files into `binding_moad`.
|
40 |
+
|
41 |
+
Run the script `moad.py` in a compute job on an MPI-enabled cluster
|
42 |
+
(e.g., `mpirun -n 64 moad.py).
|
43 |
+
|
44 |
+
Perform the steps in the notebook `moad.ipynb`
|
45 |
+
|
46 |
+
4. BioLIP
|
47 |
+
|
48 |
+
Download from [https://zhanglab.ccmb.med.umich.edu/BioLiP/] the files
|
49 |
+
- receptor_nr1.tar.bz2 (Receptor1, Non-redudant set)
|
50 |
+
- ligand_nr.tar.bz2 (Ligands)
|
51 |
+
- BioLiP_nr.tar.bz2 (Annotations)
|
52 |
+
and extract them in `biolip/data`.
|
53 |
+
|
54 |
+
Run the script `biolip.py` in a compute job on an MPI-enabled cluster
|
55 |
+
(e.g., `mpirun -n 64 biolip.py).
|
56 |
+
|
57 |
+
Perform sthe steps in the notebook `biolip.ipynb`
|
58 |
+
|
59 |
+
5. Final concatenation and filtering
|
60 |
+
|
61 |
+
Run the steps in the notebook `combine_dbs.ipynb`
|
bindingdb.ipynb
ADDED
@@ -0,0 +1,791 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "ecce356e-321b-441e-8a5d-a20bf72f8691",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import dask.dataframe as dd"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
+
"id": "89cbcd82-4ca2-4aba-95b7-e58c0ceed770",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"cols = ['Ligand SMILES', 'IC50 (nM)','KEGG ID of Ligand','Ki (nM)', 'Kd (nM)','EC50 (nM)']"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 3,
|
26 |
+
"id": "a870d8d7-374b-4474-b9ee-305bbf9f17a9",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"import tqdm.notebook"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"id": "e9f76b32-e8f0-47ee-b592-a91a88f4f93e",
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [],
|
39 |
+
"source": [
|
40 |
+
"for i in tqdm.notebook.tqdm(range(0,13)):\n",
|
41 |
+
" mycol = 'BindingDB Target Chain Sequence.{}'.format(i)\n",
|
42 |
+
" allseq = ['BindingDB Target Chain Sequence']+['BindingDB Target Chain Sequence.{}'.format(j) for j in range(1,13)]\n",
|
43 |
+
" dtypes = {'BindingDB Target Chain Sequence.{}'.format(i): 'object' for i in range(1,13)}\n",
|
44 |
+
" dtypes.update({'BindingDB Target Chain Sequence': 'object',\n",
|
45 |
+
" 'IC50 (nM)': 'object',\n",
|
46 |
+
" 'KEGG ID of Ligand': 'object',\n",
|
47 |
+
" 'Ki (nM)': 'object',\n",
|
48 |
+
" 'Kd (nM)': 'object',\n",
|
49 |
+
" 'EC50 (nM)': 'object',\n",
|
50 |
+
" 'koff (s-1)': 'object'})\n",
|
51 |
+
" ddf = dd.read_csv('bindingdb/data/BindingDB_All.tsv',sep='\\t',error_bad_lines=False,blocksize=16*1024*1024,\n",
|
52 |
+
" usecols=cols+allseq,\n",
|
53 |
+
" dtype=dtypes)\n",
|
54 |
+
" ddf = ddf.reset_index()\n",
|
55 |
+
" ddf = ddf.rename(columns={'BindingDB Target Chain Sequence.{}'.format(j): 'seq_{}'.format(j) for j in range(1,13)})\n",
|
56 |
+
" ddf = ddf.rename(columns={'BindingDB Target Chain Sequence': 'seq_0'})\n",
|
57 |
+
" ddf = ddf.drop(columns={'seq_{}'.format(j) for j in range(0,13) if i != j})\n",
|
58 |
+
" ddf[cols+['seq_{}'.format(i)]].to_parquet('bindingdb/parquet_data/target{}'.format(i),schema='infer')"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 68,
|
64 |
+
"id": "be79bbcf-0622-4d1e-8f08-a723a4167d8b",
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"ddfs = []\n",
|
69 |
+
"for i in range(0,13):\n",
|
70 |
+
" ddf = dd.read_parquet('bindingdb/parquet_data/target{}'.format(i))\n",
|
71 |
+
" ddf = ddf.rename(columns={'seq_{}'.format(i): 'seq'})\n",
|
72 |
+
" ddfs.append(ddf)"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 69,
|
78 |
+
"id": "35ca09cb-6264-4526-b504-0d29236a03c1",
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [],
|
81 |
+
"source": [
|
82 |
+
"ddf = dd.concat(ddfs)"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": 70,
|
88 |
+
"id": "ba518a9a-0d15-47be-977b-e2dfe2511529",
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [
|
91 |
+
{
|
92 |
+
"data": {
|
93 |
+
"text/html": [
|
94 |
+
"<div>\n",
|
95 |
+
"<style scoped>\n",
|
96 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
97 |
+
" vertical-align: middle;\n",
|
98 |
+
" }\n",
|
99 |
+
"\n",
|
100 |
+
" .dataframe tbody tr th {\n",
|
101 |
+
" vertical-align: top;\n",
|
102 |
+
" }\n",
|
103 |
+
"\n",
|
104 |
+
" .dataframe thead th {\n",
|
105 |
+
" text-align: right;\n",
|
106 |
+
" }\n",
|
107 |
+
"</style>\n",
|
108 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
109 |
+
" <thead>\n",
|
110 |
+
" <tr style=\"text-align: right;\">\n",
|
111 |
+
" <th></th>\n",
|
112 |
+
" <th>Ligand SMILES</th>\n",
|
113 |
+
" <th>IC50 (nM)</th>\n",
|
114 |
+
" <th>KEGG ID of Ligand</th>\n",
|
115 |
+
" <th>Ki (nM)</th>\n",
|
116 |
+
" <th>Kd (nM)</th>\n",
|
117 |
+
" <th>EC50 (nM)</th>\n",
|
118 |
+
" <th>seq</th>\n",
|
119 |
+
" </tr>\n",
|
120 |
+
" </thead>\n",
|
121 |
+
" <tbody>\n",
|
122 |
+
" <tr>\n",
|
123 |
+
" <th>0</th>\n",
|
124 |
+
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
125 |
+
" <td>None</td>\n",
|
126 |
+
" <td>None</td>\n",
|
127 |
+
" <td>0.24</td>\n",
|
128 |
+
" <td>None</td>\n",
|
129 |
+
" <td>None</td>\n",
|
130 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
131 |
+
" </tr>\n",
|
132 |
+
" <tr>\n",
|
133 |
+
" <th>1</th>\n",
|
134 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
135 |
+
" <td>None</td>\n",
|
136 |
+
" <td>None</td>\n",
|
137 |
+
" <td>0.25</td>\n",
|
138 |
+
" <td>None</td>\n",
|
139 |
+
" <td>None</td>\n",
|
140 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
141 |
+
" </tr>\n",
|
142 |
+
" <tr>\n",
|
143 |
+
" <th>2</th>\n",
|
144 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
145 |
+
" <td>None</td>\n",
|
146 |
+
" <td>None</td>\n",
|
147 |
+
" <td>0.41</td>\n",
|
148 |
+
" <td>None</td>\n",
|
149 |
+
" <td>None</td>\n",
|
150 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
151 |
+
" </tr>\n",
|
152 |
+
" <tr>\n",
|
153 |
+
" <th>3</th>\n",
|
154 |
+
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
155 |
+
" <td>None</td>\n",
|
156 |
+
" <td>None</td>\n",
|
157 |
+
" <td>0.8</td>\n",
|
158 |
+
" <td>None</td>\n",
|
159 |
+
" <td>None</td>\n",
|
160 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
161 |
+
" </tr>\n",
|
162 |
+
" <tr>\n",
|
163 |
+
" <th>4</th>\n",
|
164 |
+
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
165 |
+
" <td>None</td>\n",
|
166 |
+
" <td>None</td>\n",
|
167 |
+
" <td>0.99</td>\n",
|
168 |
+
" <td>None</td>\n",
|
169 |
+
" <td>None</td>\n",
|
170 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
171 |
+
" </tr>\n",
|
172 |
+
" </tbody>\n",
|
173 |
+
"</table>\n",
|
174 |
+
"</div>"
|
175 |
+
],
|
176 |
+
"text/plain": [
|
177 |
+
" Ligand SMILES IC50 (nM) \\\n",
|
178 |
+
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
|
179 |
+
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
|
180 |
+
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
|
181 |
+
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
|
182 |
+
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
|
183 |
+
"\n",
|
184 |
+
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
|
185 |
+
"0 None 0.24 None None \n",
|
186 |
+
"1 None 0.25 None None \n",
|
187 |
+
"2 None 0.41 None None \n",
|
188 |
+
"3 None 0.8 None None \n",
|
189 |
+
"4 None 0.99 None None \n",
|
190 |
+
"\n",
|
191 |
+
" seq \n",
|
192 |
+
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
193 |
+
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
194 |
+
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
195 |
+
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
196 |
+
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... "
|
197 |
+
]
|
198 |
+
},
|
199 |
+
"execution_count": 70,
|
200 |
+
"metadata": {},
|
201 |
+
"output_type": "execute_result"
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"source": [
|
205 |
+
"ddf.head()"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"cell_type": "code",
|
210 |
+
"execution_count": 71,
|
211 |
+
"id": "f504d7aa-dfc1-4346-a136-8814c4b5d979",
|
212 |
+
"metadata": {},
|
213 |
+
"outputs": [],
|
214 |
+
"source": [
|
215 |
+
"ddf.repartition(partition_size='25MB').to_parquet('bindingdb/parquet_data/all_targets',schema='infer')"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": 4,
|
221 |
+
"id": "d7eafa69-4606-4b34-ae8f-8c6462dcb004",
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": [
|
225 |
+
"ddf = dd.read_parquet('bindingdb/parquet_data/all_targets')"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "code",
|
230 |
+
"execution_count": 5,
|
231 |
+
"id": "b151868a-0cd6-405e-8401-f79918fb0b07",
|
232 |
+
"metadata": {},
|
233 |
+
"outputs": [
|
234 |
+
{
|
235 |
+
"data": {
|
236 |
+
"text/html": [
|
237 |
+
"<div><strong>Dask DataFrame Structure:</strong></div>\n",
|
238 |
+
"<div>\n",
|
239 |
+
"<style scoped>\n",
|
240 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
241 |
+
" vertical-align: middle;\n",
|
242 |
+
" }\n",
|
243 |
+
"\n",
|
244 |
+
" .dataframe tbody tr th {\n",
|
245 |
+
" vertical-align: top;\n",
|
246 |
+
" }\n",
|
247 |
+
"\n",
|
248 |
+
" .dataframe thead th {\n",
|
249 |
+
" text-align: right;\n",
|
250 |
+
" }\n",
|
251 |
+
"</style>\n",
|
252 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
253 |
+
" <thead>\n",
|
254 |
+
" <tr style=\"text-align: right;\">\n",
|
255 |
+
" <th></th>\n",
|
256 |
+
" <th>Ligand SMILES</th>\n",
|
257 |
+
" <th>IC50 (nM)</th>\n",
|
258 |
+
" <th>KEGG ID of Ligand</th>\n",
|
259 |
+
" <th>Ki (nM)</th>\n",
|
260 |
+
" <th>Kd (nM)</th>\n",
|
261 |
+
" <th>EC50 (nM)</th>\n",
|
262 |
+
" <th>seq</th>\n",
|
263 |
+
" </tr>\n",
|
264 |
+
" <tr>\n",
|
265 |
+
" <th>npartitions=459</th>\n",
|
266 |
+
" <th></th>\n",
|
267 |
+
" <th></th>\n",
|
268 |
+
" <th></th>\n",
|
269 |
+
" <th></th>\n",
|
270 |
+
" <th></th>\n",
|
271 |
+
" <th></th>\n",
|
272 |
+
" <th></th>\n",
|
273 |
+
" </tr>\n",
|
274 |
+
" </thead>\n",
|
275 |
+
" <tbody>\n",
|
276 |
+
" <tr>\n",
|
277 |
+
" <th></th>\n",
|
278 |
+
" <td>object</td>\n",
|
279 |
+
" <td>object</td>\n",
|
280 |
+
" <td>object</td>\n",
|
281 |
+
" <td>object</td>\n",
|
282 |
+
" <td>object</td>\n",
|
283 |
+
" <td>object</td>\n",
|
284 |
+
" <td>object</td>\n",
|
285 |
+
" </tr>\n",
|
286 |
+
" <tr>\n",
|
287 |
+
" <th></th>\n",
|
288 |
+
" <td>...</td>\n",
|
289 |
+
" <td>...</td>\n",
|
290 |
+
" <td>...</td>\n",
|
291 |
+
" <td>...</td>\n",
|
292 |
+
" <td>...</td>\n",
|
293 |
+
" <td>...</td>\n",
|
294 |
+
" <td>...</td>\n",
|
295 |
+
" </tr>\n",
|
296 |
+
" <tr>\n",
|
297 |
+
" <th>...</th>\n",
|
298 |
+
" <td>...</td>\n",
|
299 |
+
" <td>...</td>\n",
|
300 |
+
" <td>...</td>\n",
|
301 |
+
" <td>...</td>\n",
|
302 |
+
" <td>...</td>\n",
|
303 |
+
" <td>...</td>\n",
|
304 |
+
" <td>...</td>\n",
|
305 |
+
" </tr>\n",
|
306 |
+
" <tr>\n",
|
307 |
+
" <th></th>\n",
|
308 |
+
" <td>...</td>\n",
|
309 |
+
" <td>...</td>\n",
|
310 |
+
" <td>...</td>\n",
|
311 |
+
" <td>...</td>\n",
|
312 |
+
" <td>...</td>\n",
|
313 |
+
" <td>...</td>\n",
|
314 |
+
" <td>...</td>\n",
|
315 |
+
" </tr>\n",
|
316 |
+
" <tr>\n",
|
317 |
+
" <th></th>\n",
|
318 |
+
" <td>...</td>\n",
|
319 |
+
" <td>...</td>\n",
|
320 |
+
" <td>...</td>\n",
|
321 |
+
" <td>...</td>\n",
|
322 |
+
" <td>...</td>\n",
|
323 |
+
" <td>...</td>\n",
|
324 |
+
" <td>...</td>\n",
|
325 |
+
" </tr>\n",
|
326 |
+
" </tbody>\n",
|
327 |
+
"</table>\n",
|
328 |
+
"</div>\n",
|
329 |
+
"<div>Dask Name: read-parquet, 459 tasks</div>"
|
330 |
+
],
|
331 |
+
"text/plain": [
|
332 |
+
"Dask DataFrame Structure:\n",
|
333 |
+
" Ligand SMILES IC50 (nM) KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) seq\n",
|
334 |
+
"npartitions=459 \n",
|
335 |
+
" object object object object object object object\n",
|
336 |
+
" ... ... ... ... ... ... ...\n",
|
337 |
+
"... ... ... ... ... ... ... ...\n",
|
338 |
+
" ... ... ... ... ... ... ...\n",
|
339 |
+
" ... ... ... ... ... ... ...\n",
|
340 |
+
"Dask Name: read-parquet, 459 tasks"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
"execution_count": 5,
|
344 |
+
"metadata": {},
|
345 |
+
"output_type": "execute_result"
|
346 |
+
}
|
347 |
+
],
|
348 |
+
"source": [
|
349 |
+
"ddf"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": 6,
|
355 |
+
"id": "c00102b8-f4be-4ebd-8d30-7a2c7fc2d05e",
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [],
|
358 |
+
"source": [
|
359 |
+
"ddf_nonnull = ddf[~ddf.seq.isnull()].copy()"
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "code",
|
364 |
+
"execution_count": 7,
|
365 |
+
"id": "c5337e06-1e45-4180-90ed-49ac9ecdd24a",
|
366 |
+
"metadata": {},
|
367 |
+
"outputs": [
|
368 |
+
{
|
369 |
+
"data": {
|
370 |
+
"text/html": [
|
371 |
+
"<div>\n",
|
372 |
+
"<style scoped>\n",
|
373 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
374 |
+
" vertical-align: middle;\n",
|
375 |
+
" }\n",
|
376 |
+
"\n",
|
377 |
+
" .dataframe tbody tr th {\n",
|
378 |
+
" vertical-align: top;\n",
|
379 |
+
" }\n",
|
380 |
+
"\n",
|
381 |
+
" .dataframe thead th {\n",
|
382 |
+
" text-align: right;\n",
|
383 |
+
" }\n",
|
384 |
+
"</style>\n",
|
385 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
386 |
+
" <thead>\n",
|
387 |
+
" <tr style=\"text-align: right;\">\n",
|
388 |
+
" <th></th>\n",
|
389 |
+
" <th>Ligand SMILES</th>\n",
|
390 |
+
" <th>IC50 (nM)</th>\n",
|
391 |
+
" <th>KEGG ID of Ligand</th>\n",
|
392 |
+
" <th>Ki (nM)</th>\n",
|
393 |
+
" <th>Kd (nM)</th>\n",
|
394 |
+
" <th>EC50 (nM)</th>\n",
|
395 |
+
" <th>seq</th>\n",
|
396 |
+
" </tr>\n",
|
397 |
+
" </thead>\n",
|
398 |
+
" <tbody>\n",
|
399 |
+
" <tr>\n",
|
400 |
+
" <th>4453</th>\n",
|
401 |
+
" <td>CC(C)C[C@H](NC(=O)N1CCC(CC1)C(=O)Nc1ccc(cc1)-c...</td>\n",
|
402 |
+
" <td>9.4</td>\n",
|
403 |
+
" <td>None</td>\n",
|
404 |
+
" <td>None</td>\n",
|
405 |
+
" <td>None</td>\n",
|
406 |
+
" <td>None</td>\n",
|
407 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
408 |
+
" </tr>\n",
|
409 |
+
" <tr>\n",
|
410 |
+
" <th>4454</th>\n",
|
411 |
+
" <td>CC(C)C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)c1cncc...</td>\n",
|
412 |
+
" <td>11</td>\n",
|
413 |
+
" <td>None</td>\n",
|
414 |
+
" <td>None</td>\n",
|
415 |
+
" <td>None</td>\n",
|
416 |
+
" <td>None</td>\n",
|
417 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
418 |
+
" </tr>\n",
|
419 |
+
" <tr>\n",
|
420 |
+
" <th>4455</th>\n",
|
421 |
+
" <td>CC(C)C[C@H](NC(=O)N1CCCC(C1)C(=O)Nc1cnccn1)C(=...</td>\n",
|
422 |
+
" <td>355</td>\n",
|
423 |
+
" <td>None</td>\n",
|
424 |
+
" <td>None</td>\n",
|
425 |
+
" <td>None</td>\n",
|
426 |
+
" <td>None</td>\n",
|
427 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
428 |
+
" </tr>\n",
|
429 |
+
" <tr>\n",
|
430 |
+
" <th>4456</th>\n",
|
431 |
+
" <td>COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(...</td>\n",
|
432 |
+
" <td>17</td>\n",
|
433 |
+
" <td>None</td>\n",
|
434 |
+
" <td>None</td>\n",
|
435 |
+
" <td>None</td>\n",
|
436 |
+
" <td>None</td>\n",
|
437 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
438 |
+
" </tr>\n",
|
439 |
+
" <tr>\n",
|
440 |
+
" <th>4457</th>\n",
|
441 |
+
" <td>CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=...</td>\n",
|
442 |
+
" <td>76</td>\n",
|
443 |
+
" <td>None</td>\n",
|
444 |
+
" <td>None</td>\n",
|
445 |
+
" <td>None</td>\n",
|
446 |
+
" <td>None</td>\n",
|
447 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
448 |
+
" </tr>\n",
|
449 |
+
" </tbody>\n",
|
450 |
+
"</table>\n",
|
451 |
+
"</div>"
|
452 |
+
],
|
453 |
+
"text/plain": [
|
454 |
+
" Ligand SMILES IC50 (nM) \\\n",
|
455 |
+
"4453 CC(C)C[C@H](NC(=O)N1CCC(CC1)C(=O)Nc1ccc(cc1)-c... 9.4 \n",
|
456 |
+
"4454 CC(C)C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)c1cncc... 11 \n",
|
457 |
+
"4455 CC(C)C[C@H](NC(=O)N1CCCC(C1)C(=O)Nc1cnccn1)C(=... 355 \n",
|
458 |
+
"4456 COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(... 17 \n",
|
459 |
+
"4457 CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=... 76 \n",
|
460 |
+
"\n",
|
461 |
+
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
|
462 |
+
"4453 None None None None \n",
|
463 |
+
"4454 None None None None \n",
|
464 |
+
"4455 None None None None \n",
|
465 |
+
"4456 None None None None \n",
|
466 |
+
"4457 None None None None \n",
|
467 |
+
"\n",
|
468 |
+
" seq \n",
|
469 |
+
"4453 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
470 |
+
"4454 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
471 |
+
"4455 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
472 |
+
"4456 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
473 |
+
"4457 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... "
|
474 |
+
]
|
475 |
+
},
|
476 |
+
"execution_count": 7,
|
477 |
+
"metadata": {},
|
478 |
+
"output_type": "execute_result"
|
479 |
+
}
|
480 |
+
],
|
481 |
+
"source": [
|
482 |
+
"ddf_nonnull.tail()"
|
483 |
+
]
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"cell_type": "code",
|
487 |
+
"execution_count": 8,
|
488 |
+
"id": "872edb84-3459-43d9-8e0e-e2a6b5d281eb",
|
489 |
+
"metadata": {},
|
490 |
+
"outputs": [],
|
491 |
+
"source": [
|
492 |
+
"from pint import UnitRegistry\n",
|
493 |
+
"import numpy as np\n",
|
494 |
+
"import re\n",
|
495 |
+
"ureg = UnitRegistry()\n",
|
496 |
+
"\n",
|
497 |
+
"def to_uM(affinities):\n",
|
498 |
+
" ic50, Ki, Kd, ec50 = affinities\n",
|
499 |
+
"\n",
|
500 |
+
" vals = []\n",
|
501 |
+
" try:\n",
|
502 |
+
" ic50 = ureg(str(ic50)+'nM').m_as(ureg.uM)\n",
|
503 |
+
" vals.append(ic50)\n",
|
504 |
+
" except:\n",
|
505 |
+
" pass\n",
|
506 |
+
"\n",
|
507 |
+
" try:\n",
|
508 |
+
" Ki = ureg(str(Ki)+'nM').m_as(ureg.uM)\n",
|
509 |
+
" vals.append(Ki)\n",
|
510 |
+
" except:\n",
|
511 |
+
" pass\n",
|
512 |
+
"\n",
|
513 |
+
" try:\n",
|
514 |
+
" Kd = ureg(str(Kd)+'nM').m_as(ureg.uM)\n",
|
515 |
+
" vals.append(Kd)\n",
|
516 |
+
" except:\n",
|
517 |
+
" pass\n",
|
518 |
+
"\n",
|
519 |
+
" try:\n",
|
520 |
+
" ec50 = ureg(str(ec50)+'nM').m_as(ureg.uM)\n",
|
521 |
+
" vals.append(ec50)\n",
|
522 |
+
" except:\n",
|
523 |
+
" pass\n",
|
524 |
+
"\n",
|
525 |
+
" if len(vals) > 0:\n",
|
526 |
+
" vals = np.array(vals)\n",
|
527 |
+
" return np.mean(vals[~np.isnan(vals)])\n",
|
528 |
+
" \n",
|
529 |
+
" return None"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 9,
|
535 |
+
"id": "b3cff13c-19b2-4413-a84b-d99062f516a7",
|
536 |
+
"metadata": {},
|
537 |
+
"outputs": [],
|
538 |
+
"source": [
|
539 |
+
"df_nonnull = ddf_nonnull.compute()"
|
540 |
+
]
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"cell_type": "code",
|
544 |
+
"execution_count": 10,
|
545 |
+
"id": "f11834ef-2b8f-4123-816c-5e54ca92a07a",
|
546 |
+
"metadata": {},
|
547 |
+
"outputs": [
|
548 |
+
{
|
549 |
+
"name": "stdout",
|
550 |
+
"output_type": "stream",
|
551 |
+
"text": [
|
552 |
+
"Collecting pandarallel\n",
|
553 |
+
" Using cached pandarallel-1.5.2.tar.gz (16 kB)\n",
|
554 |
+
"Collecting dill\n",
|
555 |
+
" Using cached dill-0.3.3-py2.py3-none-any.whl (81 kB)\n",
|
556 |
+
"Building wheels for collected packages: pandarallel\n",
|
557 |
+
" Building wheel for pandarallel (setup.py) ... \u001b[?25ldone\n",
|
558 |
+
"\u001b[?25h Created wheel for pandarallel: filename=pandarallel-1.5.2-py3-none-any.whl size=18384 sha256=d611c0def59d5c3b807ccd787aeba685a821000f283d6082fce6b37d77b4d542\n",
|
559 |
+
" Stored in directory: /autofs/nccs-svm1_home1/glaser/.cache/pip/wheels/6e/10/a9/c46b278fe836832830eb22a6a781a8379262d9a82ae87009c1\n",
|
560 |
+
"Successfully built pandarallel\n",
|
561 |
+
"Installing collected packages: dill, pandarallel\n",
|
562 |
+
"Successfully installed dill-0.3.3 pandarallel-1.5.2\n"
|
563 |
+
]
|
564 |
+
}
|
565 |
+
],
|
566 |
+
"source": [
|
567 |
+
"!pip install pandarallel"
|
568 |
+
]
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"cell_type": "code",
|
572 |
+
"execution_count": 12,
|
573 |
+
"id": "ca9795de-e821-4dc3-a7bf-70ade9e4c7f0",
|
574 |
+
"metadata": {},
|
575 |
+
"outputs": [
|
576 |
+
{
|
577 |
+
"name": "stdout",
|
578 |
+
"output_type": "stream",
|
579 |
+
"text": [
|
580 |
+
"INFO: Pandarallel will run on 32 workers.\n",
|
581 |
+
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
|
582 |
+
]
|
583 |
+
}
|
584 |
+
],
|
585 |
+
"source": [
|
586 |
+
"from pandarallel import pandarallel\n",
|
587 |
+
"pandarallel.initialize()\n"
|
588 |
+
]
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"cell_type": "code",
|
592 |
+
"execution_count": 13,
|
593 |
+
"id": "4356a3e2-fede-48e7-a486-343661fe0a0a",
|
594 |
+
"metadata": {},
|
595 |
+
"outputs": [],
|
596 |
+
"source": [
|
597 |
+
"df_affinity = df_nonnull.copy()\n",
|
598 |
+
"df_affinity['affinity_uM'] = df_affinity[['IC50 (nM)', 'Ki (nM)', 'Kd (nM)','EC50 (nM)']].parallel_apply(to_uM,axis=1)"
|
599 |
+
]
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"cell_type": "code",
|
603 |
+
"execution_count": 15,
|
604 |
+
"id": "e91c3af8-84a5-42a2-9e25-49cb2f320b0b",
|
605 |
+
"metadata": {},
|
606 |
+
"outputs": [],
|
607 |
+
"source": [
|
608 |
+
"df_affinity[~df_affinity['affinity_uM'].isnull()].to_parquet('data/bindingdb.parquet')"
|
609 |
+
]
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"cell_type": "code",
|
613 |
+
"execution_count": 18,
|
614 |
+
"id": "27194288-cf3e-4c30-ad55-3b0998fdf939",
|
615 |
+
"metadata": {},
|
616 |
+
"outputs": [
|
617 |
+
{
|
618 |
+
"data": {
|
619 |
+
"text/html": [
|
620 |
+
"<div>\n",
|
621 |
+
"<style scoped>\n",
|
622 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
623 |
+
" vertical-align: middle;\n",
|
624 |
+
" }\n",
|
625 |
+
"\n",
|
626 |
+
" .dataframe tbody tr th {\n",
|
627 |
+
" vertical-align: top;\n",
|
628 |
+
" }\n",
|
629 |
+
"\n",
|
630 |
+
" .dataframe thead th {\n",
|
631 |
+
" text-align: right;\n",
|
632 |
+
" }\n",
|
633 |
+
"</style>\n",
|
634 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
635 |
+
" <thead>\n",
|
636 |
+
" <tr style=\"text-align: right;\">\n",
|
637 |
+
" <th></th>\n",
|
638 |
+
" <th>Ligand SMILES</th>\n",
|
639 |
+
" <th>IC50 (nM)</th>\n",
|
640 |
+
" <th>KEGG ID of Ligand</th>\n",
|
641 |
+
" <th>Ki (nM)</th>\n",
|
642 |
+
" <th>Kd (nM)</th>\n",
|
643 |
+
" <th>EC50 (nM)</th>\n",
|
644 |
+
" <th>seq</th>\n",
|
645 |
+
" <th>affinity_uM</th>\n",
|
646 |
+
" </tr>\n",
|
647 |
+
" </thead>\n",
|
648 |
+
" <tbody>\n",
|
649 |
+
" <tr>\n",
|
650 |
+
" <th>0</th>\n",
|
651 |
+
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
652 |
+
" <td>None</td>\n",
|
653 |
+
" <td>None</td>\n",
|
654 |
+
" <td>0.24</td>\n",
|
655 |
+
" <td>None</td>\n",
|
656 |
+
" <td>None</td>\n",
|
657 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
658 |
+
" <td>0.00024</td>\n",
|
659 |
+
" </tr>\n",
|
660 |
+
" <tr>\n",
|
661 |
+
" <th>1</th>\n",
|
662 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
663 |
+
" <td>None</td>\n",
|
664 |
+
" <td>None</td>\n",
|
665 |
+
" <td>0.25</td>\n",
|
666 |
+
" <td>None</td>\n",
|
667 |
+
" <td>None</td>\n",
|
668 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
669 |
+
" <td>0.00025</td>\n",
|
670 |
+
" </tr>\n",
|
671 |
+
" <tr>\n",
|
672 |
+
" <th>2</th>\n",
|
673 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
674 |
+
" <td>None</td>\n",
|
675 |
+
" <td>None</td>\n",
|
676 |
+
" <td>0.41</td>\n",
|
677 |
+
" <td>None</td>\n",
|
678 |
+
" <td>None</td>\n",
|
679 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
680 |
+
" <td>0.00041</td>\n",
|
681 |
+
" </tr>\n",
|
682 |
+
" <tr>\n",
|
683 |
+
" <th>3</th>\n",
|
684 |
+
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
685 |
+
" <td>None</td>\n",
|
686 |
+
" <td>None</td>\n",
|
687 |
+
" <td>0.8</td>\n",
|
688 |
+
" <td>None</td>\n",
|
689 |
+
" <td>None</td>\n",
|
690 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
691 |
+
" <td>0.00080</td>\n",
|
692 |
+
" </tr>\n",
|
693 |
+
" <tr>\n",
|
694 |
+
" <th>4</th>\n",
|
695 |
+
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
696 |
+
" <td>None</td>\n",
|
697 |
+
" <td>None</td>\n",
|
698 |
+
" <td>0.99</td>\n",
|
699 |
+
" <td>None</td>\n",
|
700 |
+
" <td>None</td>\n",
|
701 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
702 |
+
" <td>0.00099</td>\n",
|
703 |
+
" </tr>\n",
|
704 |
+
" </tbody>\n",
|
705 |
+
"</table>\n",
|
706 |
+
"</div>"
|
707 |
+
],
|
708 |
+
"text/plain": [
|
709 |
+
" Ligand SMILES IC50 (nM) \\\n",
|
710 |
+
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
|
711 |
+
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
|
712 |
+
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
|
713 |
+
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
|
714 |
+
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
|
715 |
+
"\n",
|
716 |
+
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
|
717 |
+
"0 None 0.24 None None \n",
|
718 |
+
"1 None 0.25 None None \n",
|
719 |
+
"2 None 0.41 None None \n",
|
720 |
+
"3 None 0.8 None None \n",
|
721 |
+
"4 None 0.99 None None \n",
|
722 |
+
"\n",
|
723 |
+
" seq affinity_uM \n",
|
724 |
+
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00024 \n",
|
725 |
+
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00025 \n",
|
726 |
+
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00041 \n",
|
727 |
+
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00080 \n",
|
728 |
+
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00099 "
|
729 |
+
]
|
730 |
+
},
|
731 |
+
"execution_count": 18,
|
732 |
+
"metadata": {},
|
733 |
+
"output_type": "execute_result"
|
734 |
+
}
|
735 |
+
],
|
736 |
+
"source": [
|
737 |
+
"df_affinity.head()"
|
738 |
+
]
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"cell_type": "code",
|
742 |
+
"execution_count": 17,
|
743 |
+
"id": "603fd298-0aa6-4097-b298-c55db013548c",
|
744 |
+
"metadata": {},
|
745 |
+
"outputs": [
|
746 |
+
{
|
747 |
+
"data": {
|
748 |
+
"text/plain": [
|
749 |
+
"2391969"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
"execution_count": 17,
|
753 |
+
"metadata": {},
|
754 |
+
"output_type": "execute_result"
|
755 |
+
}
|
756 |
+
],
|
757 |
+
"source": [
|
758 |
+
"len(df_affinity)"
|
759 |
+
]
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"cell_type": "code",
|
763 |
+
"execution_count": null,
|
764 |
+
"id": "c6ea5a79-facf-4a50-9d7c-2e1864ebad3d",
|
765 |
+
"metadata": {},
|
766 |
+
"outputs": [],
|
767 |
+
"source": []
|
768 |
+
}
|
769 |
+
],
|
770 |
+
"metadata": {
|
771 |
+
"kernelspec": {
|
772 |
+
"display_name": "Python 3",
|
773 |
+
"language": "python",
|
774 |
+
"name": "python3"
|
775 |
+
},
|
776 |
+
"language_info": {
|
777 |
+
"codemirror_mode": {
|
778 |
+
"name": "ipython",
|
779 |
+
"version": 3
|
780 |
+
},
|
781 |
+
"file_extension": ".py",
|
782 |
+
"mimetype": "text/x-python",
|
783 |
+
"name": "python",
|
784 |
+
"nbconvert_exporter": "python",
|
785 |
+
"pygments_lexer": "ipython3",
|
786 |
+
"version": "3.9.4"
|
787 |
+
}
|
788 |
+
},
|
789 |
+
"nbformat": 4,
|
790 |
+
"nbformat_minor": 5
|
791 |
+
}
|
biolip.ipynb
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "ee43bf48-5491-4dc4-aa09-cb4a0f460f97",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from openbabel import pybel\n",
|
11 |
+
"from Bio.PDB import * \n"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"id": "26bc18a2-a6eb-49d3-be80-876ddc7dd8e1",
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"import pandas as pd"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 3,
|
27 |
+
"id": "3b59cfb4-c42a-425d-9653-44f07f9e864e",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"df = pd.read_table('biolip/data/BioLiP_2013-03-6_nr.txt',sep='\\t',header=None,usecols=[0,4,5,6,13,14,15,16,19])\n",
|
32 |
+
"df = df.rename(columns={0:'pdb',4:'chain',5:'l_id',6:'l_chain',\n",
|
33 |
+
" 13: 'affinity_lit',14: 'affinity_moad',15: 'affinity_pdbbind-cn',16:'affinity_bindingdb',\n",
|
34 |
+
" 19: 'seq'})"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 4,
|
40 |
+
"id": "01123edd-2b98-4fcc-a2e9-28213b9bed82",
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"base = 'biolip/data/ligand_nr/'\n",
|
45 |
+
"df['ligand_fn'] = base + df['pdb']+'_'+df['chain']+'_'+df['l_id'].astype(str)+'_'+df['l_chain'].astype(str)+'.pdb'"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 5,
|
51 |
+
"id": "bd8671da-66ad-40ad-b221-e33228be65f4",
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"df_complex = pd.read_parquet('data/biolip_complex.parquet')"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 97,
|
61 |
+
"id": "08b04d75-c01e-4b26-ae2d-622efae3bd1f",
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"df_affinity = df_complex[~df_complex['affinity_lit'].isnull() | ~df_complex['affinity_moad'].isnull() \n",
|
66 |
+
" | ~df_complex['affinity_pdbbind-cn'].isnull() | ~df_complex['affinity_bindingdb'].isnull()].copy()"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 98,
|
72 |
+
"id": "97af5533-10fe-4419-a998-ed80b7d26690",
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"from pint import UnitRegistry\n",
|
77 |
+
"import numpy as np\n",
|
78 |
+
"import re\n",
|
79 |
+
"ureg = UnitRegistry()\n",
|
80 |
+
"\n",
|
81 |
+
"def to_uM(affinities):\n",
|
82 |
+
" lit, moad, pdbbind, bindingdb = affinities\n",
|
83 |
+
"\n",
|
84 |
+
" vals = []\n",
|
85 |
+
" try:\n",
|
86 |
+
" lit = re.split('[=~<>]',str(lit))[1].split(' ')[0]\n",
|
87 |
+
" lit = ureg(lit).m_as(ureg.uM)\n",
|
88 |
+
" vals.append(lit)\n",
|
89 |
+
" except:\n",
|
90 |
+
" pass\n",
|
91 |
+
"\n",
|
92 |
+
" try:\n",
|
93 |
+
" moad = re.split('[=~<>]',str(moad))[1].split(' ')[0]\n",
|
94 |
+
" moad = ureg(moad).m_as(ureg.uM)\n",
|
95 |
+
" vals.append(moad)\n",
|
96 |
+
" except:\n",
|
97 |
+
" pass\n",
|
98 |
+
"\n",
|
99 |
+
" try:\n",
|
100 |
+
" pdbbind = re.split('[=~<>]',str(pdbbind))[1].split(' ')[0]\n",
|
101 |
+
" pdbbind = ureg(bindingdb).m_as(ureg.uM)\n",
|
102 |
+
" vals.append(pdbbind)\n",
|
103 |
+
" except:\n",
|
104 |
+
" pass\n",
|
105 |
+
"\n",
|
106 |
+
" try:\n",
|
107 |
+
" bindingdb = re.split('[=~<>]',str(bindingdb))[1].split(' ')[0]\n",
|
108 |
+
" bindingdb = ureg(bindingdb).m_as(ureg.uM)\n",
|
109 |
+
" vals.append(bindingdb)\n",
|
110 |
+
" except:\n",
|
111 |
+
" pass\n",
|
112 |
+
"\n",
|
113 |
+
" if len(vals) > 0:\n",
|
114 |
+
" vals = np.array(vals)\n",
|
115 |
+
" return np.mean(vals[~np.isnan(vals)])\n",
|
116 |
+
" \n",
|
117 |
+
" return None"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": 99,
|
123 |
+
"id": "e21154a9-d3a0-4aa3-986f-cfeebc280da6",
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [],
|
126 |
+
"source": [
|
127 |
+
"df_affinity['affinity_uM'] = df_affinity[['affinity_lit','affinity_moad','affinity_pdbbind-cn','affinity_bindingdb']].apply(to_uM,axis=1)"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 101,
|
133 |
+
"id": "0fc94de0-823d-4f4f-9904-1c4d1e722c2e",
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [
|
136 |
+
{
|
137 |
+
"data": {
|
138 |
+
"text/html": [
|
139 |
+
"<div>\n",
|
140 |
+
"<style scoped>\n",
|
141 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
142 |
+
" vertical-align: middle;\n",
|
143 |
+
" }\n",
|
144 |
+
"\n",
|
145 |
+
" .dataframe tbody tr th {\n",
|
146 |
+
" vertical-align: top;\n",
|
147 |
+
" }\n",
|
148 |
+
"\n",
|
149 |
+
" .dataframe thead th {\n",
|
150 |
+
" text-align: right;\n",
|
151 |
+
" }\n",
|
152 |
+
"</style>\n",
|
153 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
154 |
+
" <thead>\n",
|
155 |
+
" <tr style=\"text-align: right;\">\n",
|
156 |
+
" <th></th>\n",
|
157 |
+
" <th>pdb</th>\n",
|
158 |
+
" <th>chain</th>\n",
|
159 |
+
" <th>l_id</th>\n",
|
160 |
+
" <th>l_chain</th>\n",
|
161 |
+
" <th>affinity_lit</th>\n",
|
162 |
+
" <th>affinity_moad</th>\n",
|
163 |
+
" <th>affinity_pdbbind-cn</th>\n",
|
164 |
+
" <th>affinity_bindingdb</th>\n",
|
165 |
+
" <th>seq</th>\n",
|
166 |
+
" <th>ligand_fn</th>\n",
|
167 |
+
" <th>smiles</th>\n",
|
168 |
+
" <th>affinity_uM</th>\n",
|
169 |
+
" </tr>\n",
|
170 |
+
" </thead>\n",
|
171 |
+
" <tbody>\n",
|
172 |
+
" <tr>\n",
|
173 |
+
" <th>38</th>\n",
|
174 |
+
" <td>11gs</td>\n",
|
175 |
+
" <td>EAA</td>\n",
|
176 |
+
" <td>A</td>\n",
|
177 |
+
" <td>1</td>\n",
|
178 |
+
" <td>None</td>\n",
|
179 |
+
" <td>ki=1.5uM (GTT EAA)</td>\n",
|
180 |
+
" <td>Ki=1.5uM (GTT-EAA)</td>\n",
|
181 |
+
" <td>None</td>\n",
|
182 |
+
" <td>PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC...</td>\n",
|
183 |
+
" <td>biolip/data/ligand_nr/11gs_EAA_A_1.pdb</td>\n",
|
184 |
+
" <td>CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C</td>\n",
|
185 |
+
" <td>1.500</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>43</th>\n",
|
189 |
+
" <td>13gs</td>\n",
|
190 |
+
" <td>SAS</td>\n",
|
191 |
+
" <td>A</td>\n",
|
192 |
+
" <td>1</td>\n",
|
193 |
+
" <td>None</td>\n",
|
194 |
+
" <td>ki=24uM (SAS)</td>\n",
|
195 |
+
" <td>Ki=24uM (SAS)</td>\n",
|
196 |
+
" <td>None</td>\n",
|
197 |
+
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
198 |
+
" <td>biolip/data/ligand_nr/13gs_SAS_A_1.pdb</td>\n",
|
199 |
+
" <td>OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c...</td>\n",
|
200 |
+
" <td>24.000</td>\n",
|
201 |
+
" </tr>\n",
|
202 |
+
" <tr>\n",
|
203 |
+
" <th>54</th>\n",
|
204 |
+
" <td>17gs</td>\n",
|
205 |
+
" <td>GTX</td>\n",
|
206 |
+
" <td>A</td>\n",
|
207 |
+
" <td>1</td>\n",
|
208 |
+
" <td>None</td>\n",
|
209 |
+
" <td>None</td>\n",
|
210 |
+
" <td>None</td>\n",
|
211 |
+
" <td>Kd=10000nM</td>\n",
|
212 |
+
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
213 |
+
" <td>biolip/data/ligand_nr/17gs_GTX_A_1.pdb</td>\n",
|
214 |
+
" <td>CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(...</td>\n",
|
215 |
+
" <td>10.000</td>\n",
|
216 |
+
" </tr>\n",
|
217 |
+
" <tr>\n",
|
218 |
+
" <th>55</th>\n",
|
219 |
+
" <td>181l</td>\n",
|
220 |
+
" <td>BNZ</td>\n",
|
221 |
+
" <td>A</td>\n",
|
222 |
+
" <td>1</td>\n",
|
223 |
+
" <td>None</td>\n",
|
224 |
+
" <td>Ka=5700M^-1 (BNZ)</td>\n",
|
225 |
+
" <td>None</td>\n",
|
226 |
+
" <td>Kd=175000nM</td>\n",
|
227 |
+
" <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
|
228 |
+
" <td>biolip/data/ligand_nr/181l_BNZ_A_1.pdb</td>\n",
|
229 |
+
" <td>c1ccccc1</td>\n",
|
230 |
+
" <td>175.000</td>\n",
|
231 |
+
" </tr>\n",
|
232 |
+
" <tr>\n",
|
233 |
+
" <th>56</th>\n",
|
234 |
+
" <td>182l</td>\n",
|
235 |
+
" <td>BZF</td>\n",
|
236 |
+
" <td>A</td>\n",
|
237 |
+
" <td>1</td>\n",
|
238 |
+
" <td>None</td>\n",
|
239 |
+
" <td>Ka=8900M^-1 (BZF)</td>\n",
|
240 |
+
" <td>None</td>\n",
|
241 |
+
" <td>Kd=112000nM</td>\n",
|
242 |
+
" <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
|
243 |
+
" <td>biolip/data/ligand_nr/182l_BZF_A_1.pdb</td>\n",
|
244 |
+
" <td>c1ccc2c(c1)occ2</td>\n",
|
245 |
+
" <td>112.000</td>\n",
|
246 |
+
" </tr>\n",
|
247 |
+
" <tr>\n",
|
248 |
+
" <th>...</th>\n",
|
249 |
+
" <td>...</td>\n",
|
250 |
+
" <td>...</td>\n",
|
251 |
+
" <td>...</td>\n",
|
252 |
+
" <td>...</td>\n",
|
253 |
+
" <td>...</td>\n",
|
254 |
+
" <td>...</td>\n",
|
255 |
+
" <td>...</td>\n",
|
256 |
+
" <td>...</td>\n",
|
257 |
+
" <td>...</td>\n",
|
258 |
+
" <td>...</td>\n",
|
259 |
+
" <td>...</td>\n",
|
260 |
+
" <td>...</td>\n",
|
261 |
+
" </tr>\n",
|
262 |
+
" <tr>\n",
|
263 |
+
" <th>105087</th>\n",
|
264 |
+
" <td>8kme</td>\n",
|
265 |
+
" <td>III</td>\n",
|
266 |
+
" <td>3</td>\n",
|
267 |
+
" <td>1</td>\n",
|
268 |
+
" <td>None</td>\n",
|
269 |
+
" <td>ki=8uM (BNN CUC TRG LEU PRO)</td>\n",
|
270 |
+
" <td>None</td>\n",
|
271 |
+
" <td>None</td>\n",
|
272 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
273 |
+
" <td>biolip/data/ligand_nr/8kme_III_3_1.pdb</td>\n",
|
274 |
+
" <td>O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(...</td>\n",
|
275 |
+
" <td>8.000</td>\n",
|
276 |
+
" </tr>\n",
|
277 |
+
" <tr>\n",
|
278 |
+
" <th>105088</th>\n",
|
279 |
+
" <td>8kme</td>\n",
|
280 |
+
" <td>III</td>\n",
|
281 |
+
" <td>4</td>\n",
|
282 |
+
" <td>1</td>\n",
|
283 |
+
" <td>None</td>\n",
|
284 |
+
" <td>ki=8uM (BNN CUC TRG LEU PRO)</td>\n",
|
285 |
+
" <td>None</td>\n",
|
286 |
+
" <td>None</td>\n",
|
287 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
288 |
+
" <td>biolip/data/ligand_nr/8kme_III_4_1.pdb</td>\n",
|
289 |
+
" <td>CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H...</td>\n",
|
290 |
+
" <td>8.000</td>\n",
|
291 |
+
" </tr>\n",
|
292 |
+
" <tr>\n",
|
293 |
+
" <th>105106</th>\n",
|
294 |
+
" <td>966c</td>\n",
|
295 |
+
" <td>RS2</td>\n",
|
296 |
+
" <td>A</td>\n",
|
297 |
+
" <td>1</td>\n",
|
298 |
+
" <td>None</td>\n",
|
299 |
+
" <td>ki=23nM (RS2)</td>\n",
|
300 |
+
" <td>Ki=23nM (RS2)</td>\n",
|
301 |
+
" <td>None</td>\n",
|
302 |
+
" <td>RWEQTHLTYRIENYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVS...</td>\n",
|
303 |
+
" <td>biolip/data/ligand_nr/966c_RS2_A_1.pdb</td>\n",
|
304 |
+
" <td>ONC(=O)CC1(CCOCC1)S(=O)(=O)c1ccc(cc1)Oc1ccccc1</td>\n",
|
305 |
+
" <td>0.023</td>\n",
|
306 |
+
" </tr>\n",
|
307 |
+
" <tr>\n",
|
308 |
+
" <th>105124</th>\n",
|
309 |
+
" <td>9icd</td>\n",
|
310 |
+
" <td>NAP</td>\n",
|
311 |
+
" <td>A</td>\n",
|
312 |
+
" <td>1</td>\n",
|
313 |
+
" <td>None</td>\n",
|
314 |
+
" <td>kd=125uM (NAP)</td>\n",
|
315 |
+
" <td>Kd=125uM (NAP)</td>\n",
|
316 |
+
" <td>None</td>\n",
|
317 |
+
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
318 |
+
" <td>biolip/data/ligand_nr/9icd_NAP_A_1.pdb</td>\n",
|
319 |
+
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
320 |
+
" <td>125.000</td>\n",
|
321 |
+
" </tr>\n",
|
322 |
+
" <tr>\n",
|
323 |
+
" <th>105138</th>\n",
|
324 |
+
" <td>9nse</td>\n",
|
325 |
+
" <td>ISU</td>\n",
|
326 |
+
" <td>B</td>\n",
|
327 |
+
" <td>2</td>\n",
|
328 |
+
" <td>None</td>\n",
|
329 |
+
" <td>Ki=0.039uM (ISU)</td>\n",
|
330 |
+
" <td>None</td>\n",
|
331 |
+
" <td>None</td>\n",
|
332 |
+
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
333 |
+
" <td>biolip/data/ligand_nr/9nse_ISU_B_2.pdb</td>\n",
|
334 |
+
" <td>CC[Se]C(=N)N</td>\n",
|
335 |
+
" <td>0.039</td>\n",
|
336 |
+
" </tr>\n",
|
337 |
+
" </tbody>\n",
|
338 |
+
"</table>\n",
|
339 |
+
"<p>7588 rows × 12 columns</p>\n",
|
340 |
+
"</div>"
|
341 |
+
],
|
342 |
+
"text/plain": [
|
343 |
+
" pdb chain l_id l_chain affinity_lit affinity_moad \\\n",
|
344 |
+
"38 11gs EAA A 1 None ki=1.5uM (GTT EAA) \n",
|
345 |
+
"43 13gs SAS A 1 None ki=24uM (SAS) \n",
|
346 |
+
"54 17gs GTX A 1 None None \n",
|
347 |
+
"55 181l BNZ A 1 None Ka=5700M^-1 (BNZ) \n",
|
348 |
+
"56 182l BZF A 1 None Ka=8900M^-1 (BZF) \n",
|
349 |
+
"... ... ... ... ... ... ... \n",
|
350 |
+
"105087 8kme III 3 1 None ki=8uM (BNN CUC TRG LEU PRO) \n",
|
351 |
+
"105088 8kme III 4 1 None ki=8uM (BNN CUC TRG LEU PRO) \n",
|
352 |
+
"105106 966c RS2 A 1 None ki=23nM (RS2) \n",
|
353 |
+
"105124 9icd NAP A 1 None kd=125uM (NAP) \n",
|
354 |
+
"105138 9nse ISU B 2 None Ki=0.039uM (ISU) \n",
|
355 |
+
"\n",
|
356 |
+
" affinity_pdbbind-cn affinity_bindingdb \\\n",
|
357 |
+
"38 Ki=1.5uM (GTT-EAA) None \n",
|
358 |
+
"43 Ki=24uM (SAS) None \n",
|
359 |
+
"54 None Kd=10000nM \n",
|
360 |
+
"55 None Kd=175000nM \n",
|
361 |
+
"56 None Kd=112000nM \n",
|
362 |
+
"... ... ... \n",
|
363 |
+
"105087 None None \n",
|
364 |
+
"105088 None None \n",
|
365 |
+
"105106 Ki=23nM (RS2) None \n",
|
366 |
+
"105124 Kd=125uM (NAP) None \n",
|
367 |
+
"105138 None None \n",
|
368 |
+
"\n",
|
369 |
+
" seq \\\n",
|
370 |
+
"38 PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
|
371 |
+
"43 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
372 |
+
"54 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
373 |
+
"55 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
|
374 |
+
"56 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
|
375 |
+
"... ... \n",
|
376 |
+
"105087 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
377 |
+
"105088 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
378 |
+
"105106 RWEQTHLTYRIENYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVS... \n",
|
379 |
+
"105124 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
380 |
+
"105138 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
381 |
+
"\n",
|
382 |
+
" ligand_fn \\\n",
|
383 |
+
"38 biolip/data/ligand_nr/11gs_EAA_A_1.pdb \n",
|
384 |
+
"43 biolip/data/ligand_nr/13gs_SAS_A_1.pdb \n",
|
385 |
+
"54 biolip/data/ligand_nr/17gs_GTX_A_1.pdb \n",
|
386 |
+
"55 biolip/data/ligand_nr/181l_BNZ_A_1.pdb \n",
|
387 |
+
"56 biolip/data/ligand_nr/182l_BZF_A_1.pdb \n",
|
388 |
+
"... ... \n",
|
389 |
+
"105087 biolip/data/ligand_nr/8kme_III_3_1.pdb \n",
|
390 |
+
"105088 biolip/data/ligand_nr/8kme_III_4_1.pdb \n",
|
391 |
+
"105106 biolip/data/ligand_nr/966c_RS2_A_1.pdb \n",
|
392 |
+
"105124 biolip/data/ligand_nr/9icd_NAP_A_1.pdb \n",
|
393 |
+
"105138 biolip/data/ligand_nr/9nse_ISU_B_2.pdb \n",
|
394 |
+
"\n",
|
395 |
+
" smiles affinity_uM \n",
|
396 |
+
"38 CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C 1.500 \n",
|
397 |
+
"43 OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... 24.000 \n",
|
398 |
+
"54 CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... 10.000 \n",
|
399 |
+
"55 c1ccccc1 175.000 \n",
|
400 |
+
"56 c1ccc2c(c1)occ2 112.000 \n",
|
401 |
+
"... ... ... \n",
|
402 |
+
"105087 O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... 8.000 \n",
|
403 |
+
"105088 CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... 8.000 \n",
|
404 |
+
"105106 ONC(=O)CC1(CCOCC1)S(=O)(=O)c1ccc(cc1)Oc1ccccc1 0.023 \n",
|
405 |
+
"105124 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.000 \n",
|
406 |
+
"105138 CC[Se]C(=N)N 0.039 \n",
|
407 |
+
"\n",
|
408 |
+
"[7588 rows x 12 columns]"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
"execution_count": 101,
|
412 |
+
"metadata": {},
|
413 |
+
"output_type": "execute_result"
|
414 |
+
}
|
415 |
+
],
|
416 |
+
"source": [
|
417 |
+
"df_affinity[~df_affinity['affinity_uM'].isnull()]"
|
418 |
+
]
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"cell_type": "code",
|
422 |
+
"execution_count": 102,
|
423 |
+
"id": "2b483565-3c99-4c42-b2a9-f7b97cd8e80e",
|
424 |
+
"metadata": {},
|
425 |
+
"outputs": [],
|
426 |
+
"source": [
|
427 |
+
"df_affinity.to_parquet('data/biolip.parquet')"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"cell_type": "code",
|
432 |
+
"execution_count": null,
|
433 |
+
"id": "68dd5e45-b31d-492d-a47e-39072b67fa72",
|
434 |
+
"metadata": {},
|
435 |
+
"outputs": [],
|
436 |
+
"source": []
|
437 |
+
}
|
438 |
+
],
|
439 |
+
"metadata": {
|
440 |
+
"kernelspec": {
|
441 |
+
"display_name": "Python 3",
|
442 |
+
"language": "python",
|
443 |
+
"name": "python3"
|
444 |
+
},
|
445 |
+
"language_info": {
|
446 |
+
"codemirror_mode": {
|
447 |
+
"name": "ipython",
|
448 |
+
"version": 3
|
449 |
+
},
|
450 |
+
"file_extension": ".py",
|
451 |
+
"mimetype": "text/x-python",
|
452 |
+
"name": "python",
|
453 |
+
"nbconvert_exporter": "python",
|
454 |
+
"pygments_lexer": "ipython3",
|
455 |
+
"version": "3.9.4"
|
456 |
+
}
|
457 |
+
},
|
458 |
+
"nbformat": 4,
|
459 |
+
"nbformat_minor": 5
|
460 |
+
}
|
biolip.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mpi4py import MPI
|
2 |
+
from mpi4py.futures import MPICommExecutor
|
3 |
+
|
4 |
+
from openbabel import pybel
|
5 |
+
from Bio.PDB import *
|
6 |
+
parser = PDBParser()
|
7 |
+
|
8 |
+
import os
|
9 |
+
molecular_weight_cutoff = 2500
|
10 |
+
def parse_ligand(fn):
|
11 |
+
print(fn)
|
12 |
+
try:
|
13 |
+
struct = parser.get_structure('lig',fn)
|
14 |
+
if len(list(struct.get_atoms())) > molecular_weight_cutoff:
|
15 |
+
raise ValueError
|
16 |
+
mol = next(pybel.readfile('pdb',fn))
|
17 |
+
if mol.molwt > molecular_weight_cutoff:
|
18 |
+
raise ValueError
|
19 |
+
smi = mol.write('can').split('\t')[0]
|
20 |
+
return smi
|
21 |
+
except:
|
22 |
+
return None
|
23 |
+
|
24 |
+
|
25 |
+
if __name__ == '__main__':
|
26 |
+
import glob
|
27 |
+
|
28 |
+
comm = MPI.COMM_WORLD
|
29 |
+
with MPICommExecutor(comm, root=0) as executor:
|
30 |
+
if executor is not None:
|
31 |
+
import pandas as pd
|
32 |
+
|
33 |
+
df = pd.read_table('biolip/data/BioLiP_2013-03-6_nr.txt',sep='\t',header=None,usecols=[0,4,5,6,13,14,15,16,19])
|
34 |
+
df = df.rename(columns={0:'pdb',4:'chain',5:'l_id',6:'l_chain',
|
35 |
+
13: 'affinity_lit',14: 'affinity_moad',15: 'affinity_pdbbind-cn',16:'affinity_bindingdb',
|
36 |
+
19: 'seq'})
|
37 |
+
base = 'biolip/data/ligand_nr/'
|
38 |
+
df['ligand_fn'] = base + df['pdb']+'_'+df['chain']+'_'+df['l_id'].astype(str)+'_'+df['l_chain'].astype(str)+'.pdb'
|
39 |
+
smiles = list(executor.map(parse_ligand, df['ligand_fn']))
|
40 |
+
df['smiles'] = smiles
|
41 |
+
df.to_parquet('data/biolip_complex.parquet')
|
combine_dbs.ipynb
ADDED
@@ -0,0 +1,1477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "95bd761a-fe51-4a8e-bc70-1365260ba5f8",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 84,
|
16 |
+
"id": "b0859483-5e19-4280-9f53-0d00a6f22d34",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"df_pdbbind = pd.read_parquet('data/pdbbind.parquet')\n",
|
21 |
+
"df_pdbbind = df_pdbbind[['seq','smiles','affinity_uM']]"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 85,
|
27 |
+
"id": "f30732b7-7444-47ad-84e7-566e7a6f2f8e",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"data": {
|
32 |
+
"text/html": [
|
33 |
+
"<div>\n",
|
34 |
+
"<style scoped>\n",
|
35 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
36 |
+
" vertical-align: middle;\n",
|
37 |
+
" }\n",
|
38 |
+
"\n",
|
39 |
+
" .dataframe tbody tr th {\n",
|
40 |
+
" vertical-align: top;\n",
|
41 |
+
" }\n",
|
42 |
+
"\n",
|
43 |
+
" .dataframe thead th {\n",
|
44 |
+
" text-align: right;\n",
|
45 |
+
" }\n",
|
46 |
+
"</style>\n",
|
47 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
48 |
+
" <thead>\n",
|
49 |
+
" <tr style=\"text-align: right;\">\n",
|
50 |
+
" <th></th>\n",
|
51 |
+
" <th>seq</th>\n",
|
52 |
+
" <th>smiles</th>\n",
|
53 |
+
" <th>affinity_uM</th>\n",
|
54 |
+
" </tr>\n",
|
55 |
+
" </thead>\n",
|
56 |
+
" <tbody>\n",
|
57 |
+
" <tr>\n",
|
58 |
+
" <th>0</th>\n",
|
59 |
+
" <td>MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE...</td>\n",
|
60 |
+
" <td>CCCCCCCCCCCCCCCCCCC[C-](=O)=O</td>\n",
|
61 |
+
" <td>0.026</td>\n",
|
62 |
+
" </tr>\n",
|
63 |
+
" <tr>\n",
|
64 |
+
" <th>1</th>\n",
|
65 |
+
" <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
|
66 |
+
" <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
|
67 |
+
" <td>500.000</td>\n",
|
68 |
+
" </tr>\n",
|
69 |
+
" <tr>\n",
|
70 |
+
" <th>2</th>\n",
|
71 |
+
" <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
|
72 |
+
" <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
|
73 |
+
" <td>0.023</td>\n",
|
74 |
+
" </tr>\n",
|
75 |
+
" <tr>\n",
|
76 |
+
" <th>3</th>\n",
|
77 |
+
" <td>AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM...</td>\n",
|
78 |
+
" <td>OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)[C-](=O)=O)NC...</td>\n",
|
79 |
+
" <td>6.430</td>\n",
|
80 |
+
" </tr>\n",
|
81 |
+
" <tr>\n",
|
82 |
+
" <th>4</th>\n",
|
83 |
+
" <td>GSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGA...</td>\n",
|
84 |
+
" <td>O=[C-](=O)[C@@H](NC1=NC(C)(C)Cc2c1cccc2)Cc1ccccc1</td>\n",
|
85 |
+
" <td>27.200</td>\n",
|
86 |
+
" </tr>\n",
|
87 |
+
" </tbody>\n",
|
88 |
+
"</table>\n",
|
89 |
+
"</div>"
|
90 |
+
],
|
91 |
+
"text/plain": [
|
92 |
+
" seq \\\n",
|
93 |
+
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
|
94 |
+
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
|
95 |
+
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
|
96 |
+
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
|
97 |
+
"4 GSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGA... \n",
|
98 |
+
"\n",
|
99 |
+
" smiles affinity_uM \n",
|
100 |
+
"0 CCCCCCCCCCCCCCCCCCC[C-](=O)=O 0.026 \n",
|
101 |
+
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.000 \n",
|
102 |
+
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.023 \n",
|
103 |
+
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)[C-](=O)=O)NC... 6.430 \n",
|
104 |
+
"4 O=[C-](=O)[C@@H](NC1=NC(C)(C)Cc2c1cccc2)Cc1ccccc1 27.200 "
|
105 |
+
]
|
106 |
+
},
|
107 |
+
"execution_count": 85,
|
108 |
+
"metadata": {},
|
109 |
+
"output_type": "execute_result"
|
110 |
+
}
|
111 |
+
],
|
112 |
+
"source": [
|
113 |
+
"df_pdbbind.head()"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": 119,
|
119 |
+
"id": "2787b9fd-3d6f-4ae3-a3ad-d3539b72782b",
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [],
|
122 |
+
"source": [
|
123 |
+
"from rdkit import Chem\n",
|
124 |
+
"from rdkit.Chem import MACCSkeys\n",
|
125 |
+
"import numpy as np\n",
|
126 |
+
"\n",
|
127 |
+
"def get_maccs(smi):\n",
|
128 |
+
" try:\n",
|
129 |
+
" mol = Chem.MolFromSmiles(smi)\n",
|
130 |
+
" arr = np.packbits([0 if c=='0' else 1 for c in MACCSkeys.GenMACCSKeys(mol).ToBitString()])\n",
|
131 |
+
" return np.pad(arr,(0,3)).view(np.uint32)\n",
|
132 |
+
" except Exception:\n",
|
133 |
+
" pass"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 120,
|
139 |
+
"id": "84f522d5-aee8-4d0f-9186-2d90bfc62342",
|
140 |
+
"metadata": {},
|
141 |
+
"outputs": [
|
142 |
+
{
|
143 |
+
"data": {
|
144 |
+
"text/html": [
|
145 |
+
"<div>\n",
|
146 |
+
"<style scoped>\n",
|
147 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
148 |
+
" vertical-align: middle;\n",
|
149 |
+
" }\n",
|
150 |
+
"\n",
|
151 |
+
" .dataframe tbody tr th {\n",
|
152 |
+
" vertical-align: top;\n",
|
153 |
+
" }\n",
|
154 |
+
"\n",
|
155 |
+
" .dataframe thead th {\n",
|
156 |
+
" text-align: right;\n",
|
157 |
+
" }\n",
|
158 |
+
"</style>\n",
|
159 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
160 |
+
" <thead>\n",
|
161 |
+
" <tr style=\"text-align: right;\">\n",
|
162 |
+
" <th></th>\n",
|
163 |
+
" <th>seq</th>\n",
|
164 |
+
" <th>smiles</th>\n",
|
165 |
+
" <th>affinity_uM</th>\n",
|
166 |
+
" </tr>\n",
|
167 |
+
" </thead>\n",
|
168 |
+
" <tbody>\n",
|
169 |
+
" <tr>\n",
|
170 |
+
" <th>0</th>\n",
|
171 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
172 |
+
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
173 |
+
" <td>0.00024</td>\n",
|
174 |
+
" </tr>\n",
|
175 |
+
" <tr>\n",
|
176 |
+
" <th>1</th>\n",
|
177 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
178 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
179 |
+
" <td>0.00025</td>\n",
|
180 |
+
" </tr>\n",
|
181 |
+
" <tr>\n",
|
182 |
+
" <th>2</th>\n",
|
183 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
184 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
185 |
+
" <td>0.00041</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>3</th>\n",
|
189 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
190 |
+
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
191 |
+
" <td>0.00080</td>\n",
|
192 |
+
" </tr>\n",
|
193 |
+
" <tr>\n",
|
194 |
+
" <th>4</th>\n",
|
195 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
196 |
+
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
197 |
+
" <td>0.00099</td>\n",
|
198 |
+
" </tr>\n",
|
199 |
+
" <tr>\n",
|
200 |
+
" <th>...</th>\n",
|
201 |
+
" <td>...</td>\n",
|
202 |
+
" <td>...</td>\n",
|
203 |
+
" <td>...</td>\n",
|
204 |
+
" </tr>\n",
|
205 |
+
" <tr>\n",
|
206 |
+
" <th>4453</th>\n",
|
207 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
208 |
+
" <td>CC(C)C[C@H](NC(=O)N1CCC(CC1)C(=O)Nc1ccc(cc1)-c...</td>\n",
|
209 |
+
" <td>0.00940</td>\n",
|
210 |
+
" </tr>\n",
|
211 |
+
" <tr>\n",
|
212 |
+
" <th>4454</th>\n",
|
213 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
214 |
+
" <td>CC(C)C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)c1cncc...</td>\n",
|
215 |
+
" <td>0.01100</td>\n",
|
216 |
+
" </tr>\n",
|
217 |
+
" <tr>\n",
|
218 |
+
" <th>4455</th>\n",
|
219 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
220 |
+
" <td>CC(C)C[C@H](NC(=O)N1CCCC(C1)C(=O)Nc1cnccn1)C(=...</td>\n",
|
221 |
+
" <td>0.35500</td>\n",
|
222 |
+
" </tr>\n",
|
223 |
+
" <tr>\n",
|
224 |
+
" <th>4456</th>\n",
|
225 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
226 |
+
" <td>COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(...</td>\n",
|
227 |
+
" <td>0.01700</td>\n",
|
228 |
+
" </tr>\n",
|
229 |
+
" <tr>\n",
|
230 |
+
" <th>4457</th>\n",
|
231 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
232 |
+
" <td>CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=...</td>\n",
|
233 |
+
" <td>0.07600</td>\n",
|
234 |
+
" </tr>\n",
|
235 |
+
" </tbody>\n",
|
236 |
+
"</table>\n",
|
237 |
+
"<p>2389700 rows × 3 columns</p>\n",
|
238 |
+
"</div>"
|
239 |
+
],
|
240 |
+
"text/plain": [
|
241 |
+
" seq \\\n",
|
242 |
+
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
243 |
+
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
244 |
+
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
245 |
+
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
246 |
+
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
247 |
+
"... ... \n",
|
248 |
+
"4453 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
249 |
+
"4454 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
250 |
+
"4455 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
251 |
+
"4456 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
252 |
+
"4457 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
253 |
+
"\n",
|
254 |
+
" smiles affinity_uM \n",
|
255 |
+
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.00024 \n",
|
256 |
+
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.00025 \n",
|
257 |
+
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.00041 \n",
|
258 |
+
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.00080 \n",
|
259 |
+
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.00099 \n",
|
260 |
+
"... ... ... \n",
|
261 |
+
"4453 CC(C)C[C@H](NC(=O)N1CCC(CC1)C(=O)Nc1ccc(cc1)-c... 0.00940 \n",
|
262 |
+
"4454 CC(C)C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)c1cncc... 0.01100 \n",
|
263 |
+
"4455 CC(C)C[C@H](NC(=O)N1CCCC(C1)C(=O)Nc1cnccn1)C(=... 0.35500 \n",
|
264 |
+
"4456 COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(... 0.01700 \n",
|
265 |
+
"4457 CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=... 0.07600 \n",
|
266 |
+
"\n",
|
267 |
+
"[2389700 rows x 3 columns]"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
"execution_count": 120,
|
271 |
+
"metadata": {},
|
272 |
+
"output_type": "execute_result"
|
273 |
+
}
|
274 |
+
],
|
275 |
+
"source": [
|
276 |
+
"df_bindingdb"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": 88,
|
282 |
+
"id": "d1abe1c8-ac66-4289-8964-367a5b18528d",
|
283 |
+
"metadata": {},
|
284 |
+
"outputs": [],
|
285 |
+
"source": [
|
286 |
+
"df_bindingdb = pd.read_parquet('data/bindingdb.parquet')\n",
|
287 |
+
"df_bindingdb = df_bindingdb[['seq','Ligand SMILES','affinity_uM']].rename(columns={'Ligand SMILES': 'smiles'})"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"execution_count": 89,
|
293 |
+
"id": "988bab9c-5147-44e2-92ef-902eaf3c5a90",
|
294 |
+
"metadata": {},
|
295 |
+
"outputs": [
|
296 |
+
{
|
297 |
+
"data": {
|
298 |
+
"text/html": [
|
299 |
+
"<div>\n",
|
300 |
+
"<style scoped>\n",
|
301 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
302 |
+
" vertical-align: middle;\n",
|
303 |
+
" }\n",
|
304 |
+
"\n",
|
305 |
+
" .dataframe tbody tr th {\n",
|
306 |
+
" vertical-align: top;\n",
|
307 |
+
" }\n",
|
308 |
+
"\n",
|
309 |
+
" .dataframe thead th {\n",
|
310 |
+
" text-align: right;\n",
|
311 |
+
" }\n",
|
312 |
+
"</style>\n",
|
313 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
314 |
+
" <thead>\n",
|
315 |
+
" <tr style=\"text-align: right;\">\n",
|
316 |
+
" <th></th>\n",
|
317 |
+
" <th>seq</th>\n",
|
318 |
+
" <th>smiles</th>\n",
|
319 |
+
" <th>affinity_uM</th>\n",
|
320 |
+
" </tr>\n",
|
321 |
+
" </thead>\n",
|
322 |
+
" <tbody>\n",
|
323 |
+
" <tr>\n",
|
324 |
+
" <th>0</th>\n",
|
325 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
326 |
+
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
327 |
+
" <td>0.00024</td>\n",
|
328 |
+
" </tr>\n",
|
329 |
+
" <tr>\n",
|
330 |
+
" <th>1</th>\n",
|
331 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
332 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
333 |
+
" <td>0.00025</td>\n",
|
334 |
+
" </tr>\n",
|
335 |
+
" <tr>\n",
|
336 |
+
" <th>2</th>\n",
|
337 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
338 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
339 |
+
" <td>0.00041</td>\n",
|
340 |
+
" </tr>\n",
|
341 |
+
" <tr>\n",
|
342 |
+
" <th>3</th>\n",
|
343 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
344 |
+
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
345 |
+
" <td>0.00080</td>\n",
|
346 |
+
" </tr>\n",
|
347 |
+
" <tr>\n",
|
348 |
+
" <th>4</th>\n",
|
349 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
350 |
+
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
351 |
+
" <td>0.00099</td>\n",
|
352 |
+
" </tr>\n",
|
353 |
+
" </tbody>\n",
|
354 |
+
"</table>\n",
|
355 |
+
"</div>"
|
356 |
+
],
|
357 |
+
"text/plain": [
|
358 |
+
" seq \\\n",
|
359 |
+
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
360 |
+
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
361 |
+
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
362 |
+
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
363 |
+
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
364 |
+
"\n",
|
365 |
+
" smiles affinity_uM \n",
|
366 |
+
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.00024 \n",
|
367 |
+
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.00025 \n",
|
368 |
+
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.00041 \n",
|
369 |
+
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.00080 \n",
|
370 |
+
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.00099 "
|
371 |
+
]
|
372 |
+
},
|
373 |
+
"execution_count": 89,
|
374 |
+
"metadata": {},
|
375 |
+
"output_type": "execute_result"
|
376 |
+
}
|
377 |
+
],
|
378 |
+
"source": [
|
379 |
+
"df_bindingdb.head()"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"cell_type": "code",
|
384 |
+
"execution_count": 93,
|
385 |
+
"id": "d7bfee2a-c4e6-48c9-b0c6-52f6a69c7453",
|
386 |
+
"metadata": {},
|
387 |
+
"outputs": [],
|
388 |
+
"source": [
|
389 |
+
"df_moad = pd.read_parquet('data/moad.parquet')\n",
|
390 |
+
"df_moad = df_moad[['seq','smiles','affinity_uM']]"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"cell_type": "code",
|
395 |
+
"execution_count": 94,
|
396 |
+
"id": "25553199-1715-40fb-9260-427bdd6c3706",
|
397 |
+
"metadata": {},
|
398 |
+
"outputs": [
|
399 |
+
{
|
400 |
+
"data": {
|
401 |
+
"text/html": [
|
402 |
+
"<div>\n",
|
403 |
+
"<style scoped>\n",
|
404 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
405 |
+
" vertical-align: middle;\n",
|
406 |
+
" }\n",
|
407 |
+
"\n",
|
408 |
+
" .dataframe tbody tr th {\n",
|
409 |
+
" vertical-align: top;\n",
|
410 |
+
" }\n",
|
411 |
+
"\n",
|
412 |
+
" .dataframe thead th {\n",
|
413 |
+
" text-align: right;\n",
|
414 |
+
" }\n",
|
415 |
+
"</style>\n",
|
416 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
417 |
+
" <thead>\n",
|
418 |
+
" <tr style=\"text-align: right;\">\n",
|
419 |
+
" <th></th>\n",
|
420 |
+
" <th>seq</th>\n",
|
421 |
+
" <th>smiles</th>\n",
|
422 |
+
" <th>affinity_uM</th>\n",
|
423 |
+
" </tr>\n",
|
424 |
+
" </thead>\n",
|
425 |
+
" <tbody>\n",
|
426 |
+
" <tr>\n",
|
427 |
+
" <th>0</th>\n",
|
428 |
+
" <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
|
429 |
+
" <td>NP(=O)(N)O</td>\n",
|
430 |
+
" <td>0.000620</td>\n",
|
431 |
+
" </tr>\n",
|
432 |
+
" <tr>\n",
|
433 |
+
" <th>2</th>\n",
|
434 |
+
" <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
|
435 |
+
" <td>CC(=O)NO</td>\n",
|
436 |
+
" <td>2.600000</td>\n",
|
437 |
+
" </tr>\n",
|
438 |
+
" <tr>\n",
|
439 |
+
" <th>7</th>\n",
|
440 |
+
" <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
|
441 |
+
" <td>C#CCCOP(=O)(O)OP(=O)(O)O</td>\n",
|
442 |
+
" <td>0.580000</td>\n",
|
443 |
+
" </tr>\n",
|
444 |
+
" <tr>\n",
|
445 |
+
" <th>16</th>\n",
|
446 |
+
" <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
|
447 |
+
" <td>C#CCOP(=O)(O)OP(=O)(O)O</td>\n",
|
448 |
+
" <td>0.770000</td>\n",
|
449 |
+
" </tr>\n",
|
450 |
+
" <tr>\n",
|
451 |
+
" <th>17</th>\n",
|
452 |
+
" <td>MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV...</td>\n",
|
453 |
+
" <td>c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3...</td>\n",
|
454 |
+
" <td>15.000000</td>\n",
|
455 |
+
" </tr>\n",
|
456 |
+
" <tr>\n",
|
457 |
+
" <th>...</th>\n",
|
458 |
+
" <td>...</td>\n",
|
459 |
+
" <td>...</td>\n",
|
460 |
+
" <td>...</td>\n",
|
461 |
+
" </tr>\n",
|
462 |
+
" <tr>\n",
|
463 |
+
" <th>51900</th>\n",
|
464 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
465 |
+
" <td>None</td>\n",
|
466 |
+
" <td>127.226463</td>\n",
|
467 |
+
" </tr>\n",
|
468 |
+
" <tr>\n",
|
469 |
+
" <th>51901</th>\n",
|
470 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
471 |
+
" <td>None</td>\n",
|
472 |
+
" <td>127.226463</td>\n",
|
473 |
+
" </tr>\n",
|
474 |
+
" <tr>\n",
|
475 |
+
" <th>51902</th>\n",
|
476 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
477 |
+
" <td>None</td>\n",
|
478 |
+
" <td>169.204738</td>\n",
|
479 |
+
" </tr>\n",
|
480 |
+
" <tr>\n",
|
481 |
+
" <th>51903</th>\n",
|
482 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
483 |
+
" <td>None</td>\n",
|
484 |
+
" <td>169.204738</td>\n",
|
485 |
+
" </tr>\n",
|
486 |
+
" <tr>\n",
|
487 |
+
" <th>51904</th>\n",
|
488 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
489 |
+
" <td>None</td>\n",
|
490 |
+
" <td>169.204738</td>\n",
|
491 |
+
" </tr>\n",
|
492 |
+
" </tbody>\n",
|
493 |
+
"</table>\n",
|
494 |
+
"<p>25425 rows × 3 columns</p>\n",
|
495 |
+
"</div>"
|
496 |
+
],
|
497 |
+
"text/plain": [
|
498 |
+
" seq \\\n",
|
499 |
+
"0 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
|
500 |
+
"2 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
|
501 |
+
"7 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
|
502 |
+
"16 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
|
503 |
+
"17 MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV... \n",
|
504 |
+
"... ... \n",
|
505 |
+
"51900 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
506 |
+
"51901 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
507 |
+
"51902 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
508 |
+
"51903 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
509 |
+
"51904 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
510 |
+
"\n",
|
511 |
+
" smiles affinity_uM \n",
|
512 |
+
"0 NP(=O)(N)O 0.000620 \n",
|
513 |
+
"2 CC(=O)NO 2.600000 \n",
|
514 |
+
"7 C#CCCOP(=O)(O)OP(=O)(O)O 0.580000 \n",
|
515 |
+
"16 C#CCOP(=O)(O)OP(=O)(O)O 0.770000 \n",
|
516 |
+
"17 c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... 15.000000 \n",
|
517 |
+
"... ... ... \n",
|
518 |
+
"51900 None 127.226463 \n",
|
519 |
+
"51901 None 127.226463 \n",
|
520 |
+
"51902 None 169.204738 \n",
|
521 |
+
"51903 None 169.204738 \n",
|
522 |
+
"51904 None 169.204738 \n",
|
523 |
+
"\n",
|
524 |
+
"[25425 rows x 3 columns]"
|
525 |
+
]
|
526 |
+
},
|
527 |
+
"execution_count": 94,
|
528 |
+
"metadata": {},
|
529 |
+
"output_type": "execute_result"
|
530 |
+
}
|
531 |
+
],
|
532 |
+
"source": [
|
533 |
+
"df_moad"
|
534 |
+
]
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"cell_type": "code",
|
538 |
+
"execution_count": 97,
|
539 |
+
"id": "b2c936bc-cdc8-4bc1-b92d-f8755fd65f0a",
|
540 |
+
"metadata": {},
|
541 |
+
"outputs": [],
|
542 |
+
"source": [
|
543 |
+
"df_biolip = pd.read_parquet('data/biolip.parquet')\n",
|
544 |
+
"df_biolip = df_biolip[['seq','smiles','affinity_uM']]"
|
545 |
+
]
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"cell_type": "code",
|
549 |
+
"execution_count": 98,
|
550 |
+
"id": "cee93018-601d-458b-af44-bd978da7a2bc",
|
551 |
+
"metadata": {},
|
552 |
+
"outputs": [
|
553 |
+
{
|
554 |
+
"data": {
|
555 |
+
"text/html": [
|
556 |
+
"<div>\n",
|
557 |
+
"<style scoped>\n",
|
558 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
559 |
+
" vertical-align: middle;\n",
|
560 |
+
" }\n",
|
561 |
+
"\n",
|
562 |
+
" .dataframe tbody tr th {\n",
|
563 |
+
" vertical-align: top;\n",
|
564 |
+
" }\n",
|
565 |
+
"\n",
|
566 |
+
" .dataframe thead th {\n",
|
567 |
+
" text-align: right;\n",
|
568 |
+
" }\n",
|
569 |
+
"</style>\n",
|
570 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
571 |
+
" <thead>\n",
|
572 |
+
" <tr style=\"text-align: right;\">\n",
|
573 |
+
" <th></th>\n",
|
574 |
+
" <th>seq</th>\n",
|
575 |
+
" <th>smiles</th>\n",
|
576 |
+
" <th>affinity_uM</th>\n",
|
577 |
+
" </tr>\n",
|
578 |
+
" </thead>\n",
|
579 |
+
" <tbody>\n",
|
580 |
+
" <tr>\n",
|
581 |
+
" <th>38</th>\n",
|
582 |
+
" <td>PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC...</td>\n",
|
583 |
+
" <td>CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C</td>\n",
|
584 |
+
" <td>1.500</td>\n",
|
585 |
+
" </tr>\n",
|
586 |
+
" <tr>\n",
|
587 |
+
" <th>43</th>\n",
|
588 |
+
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
589 |
+
" <td>OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c...</td>\n",
|
590 |
+
" <td>24.000</td>\n",
|
591 |
+
" </tr>\n",
|
592 |
+
" <tr>\n",
|
593 |
+
" <th>53</th>\n",
|
594 |
+
" <td>EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV...</td>\n",
|
595 |
+
" <td>O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(...</td>\n",
|
596 |
+
" <td>NaN</td>\n",
|
597 |
+
" </tr>\n",
|
598 |
+
" <tr>\n",
|
599 |
+
" <th>54</th>\n",
|
600 |
+
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
601 |
+
" <td>CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(...</td>\n",
|
602 |
+
" <td>10.000</td>\n",
|
603 |
+
" </tr>\n",
|
604 |
+
" <tr>\n",
|
605 |
+
" <th>55</th>\n",
|
606 |
+
" <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
|
607 |
+
" <td>c1ccccc1</td>\n",
|
608 |
+
" <td>175.000</td>\n",
|
609 |
+
" </tr>\n",
|
610 |
+
" <tr>\n",
|
611 |
+
" <th>...</th>\n",
|
612 |
+
" <td>...</td>\n",
|
613 |
+
" <td>...</td>\n",
|
614 |
+
" <td>...</td>\n",
|
615 |
+
" </tr>\n",
|
616 |
+
" <tr>\n",
|
617 |
+
" <th>105118</th>\n",
|
618 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
619 |
+
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
620 |
+
" <td>NaN</td>\n",
|
621 |
+
" </tr>\n",
|
622 |
+
" <tr>\n",
|
623 |
+
" <th>105119</th>\n",
|
624 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
625 |
+
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
626 |
+
" <td>NaN</td>\n",
|
627 |
+
" </tr>\n",
|
628 |
+
" <tr>\n",
|
629 |
+
" <th>105124</th>\n",
|
630 |
+
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
631 |
+
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
632 |
+
" <td>125.000</td>\n",
|
633 |
+
" </tr>\n",
|
634 |
+
" <tr>\n",
|
635 |
+
" <th>105133</th>\n",
|
636 |
+
" <td>ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...</td>\n",
|
637 |
+
" <td>CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]...</td>\n",
|
638 |
+
" <td>NaN</td>\n",
|
639 |
+
" </tr>\n",
|
640 |
+
" <tr>\n",
|
641 |
+
" <th>105138</th>\n",
|
642 |
+
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
643 |
+
" <td>CC[Se]C(=N)N</td>\n",
|
644 |
+
" <td>0.039</td>\n",
|
645 |
+
" </tr>\n",
|
646 |
+
" </tbody>\n",
|
647 |
+
"</table>\n",
|
648 |
+
"<p>13645 rows × 3 columns</p>\n",
|
649 |
+
"</div>"
|
650 |
+
],
|
651 |
+
"text/plain": [
|
652 |
+
" seq \\\n",
|
653 |
+
"38 PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
|
654 |
+
"43 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
655 |
+
"53 EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV... \n",
|
656 |
+
"54 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
657 |
+
"55 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
|
658 |
+
"... ... \n",
|
659 |
+
"105118 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
660 |
+
"105119 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
661 |
+
"105124 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
662 |
+
"105133 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
|
663 |
+
"105138 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
664 |
+
"\n",
|
665 |
+
" smiles affinity_uM \n",
|
666 |
+
"38 CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C 1.500 \n",
|
667 |
+
"43 OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... 24.000 \n",
|
668 |
+
"53 O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(... NaN \n",
|
669 |
+
"54 CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... 10.000 \n",
|
670 |
+
"55 c1ccccc1 175.000 \n",
|
671 |
+
"... ... ... \n",
|
672 |
+
"105118 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... NaN \n",
|
673 |
+
"105119 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... NaN \n",
|
674 |
+
"105124 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.000 \n",
|
675 |
+
"105133 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... NaN \n",
|
676 |
+
"105138 CC[Se]C(=N)N 0.039 \n",
|
677 |
+
"\n",
|
678 |
+
"[13645 rows x 3 columns]"
|
679 |
+
]
|
680 |
+
},
|
681 |
+
"execution_count": 98,
|
682 |
+
"metadata": {},
|
683 |
+
"output_type": "execute_result"
|
684 |
+
}
|
685 |
+
],
|
686 |
+
"source": [
|
687 |
+
"df_biolip"
|
688 |
+
]
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"cell_type": "code",
|
692 |
+
"execution_count": 134,
|
693 |
+
"id": "195f92db-fe06-4d03-8500-8d6c310a3347",
|
694 |
+
"metadata": {},
|
695 |
+
"outputs": [],
|
696 |
+
"source": [
|
697 |
+
"df_all = pd.concat([df_pdbbind,df_bindingdb,df_moad,df_biolip]).reset_index()"
|
698 |
+
]
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"cell_type": "code",
|
702 |
+
"execution_count": 135,
|
703 |
+
"id": "d25c1e24-6566-4944-a0b4-944b3c8dbc6f",
|
704 |
+
"metadata": {},
|
705 |
+
"outputs": [
|
706 |
+
{
|
707 |
+
"data": {
|
708 |
+
"text/plain": [
|
709 |
+
"2446422"
|
710 |
+
]
|
711 |
+
},
|
712 |
+
"execution_count": 135,
|
713 |
+
"metadata": {},
|
714 |
+
"output_type": "execute_result"
|
715 |
+
}
|
716 |
+
],
|
717 |
+
"source": [
|
718 |
+
"len(df_all)"
|
719 |
+
]
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"cell_type": "code",
|
723 |
+
"execution_count": 105,
|
724 |
+
"id": "c8287da2-cfdf-4d89-b175-f4c6b38ff8ac",
|
725 |
+
"metadata": {},
|
726 |
+
"outputs": [
|
727 |
+
{
|
728 |
+
"name": "stdout",
|
729 |
+
"output_type": "stream",
|
730 |
+
"text": [
|
731 |
+
"INFO: Pandarallel will run on 32 workers.\n",
|
732 |
+
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
|
733 |
+
]
|
734 |
+
}
|
735 |
+
],
|
736 |
+
"source": [
|
737 |
+
"from pandarallel import pandarallel\n",
|
738 |
+
"pandarallel.initialize()"
|
739 |
+
]
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"cell_type": "code",
|
743 |
+
"execution_count": null,
|
744 |
+
"id": "de5ffc4a-afb7-4a26-8d57-509c2278d750",
|
745 |
+
"metadata": {},
|
746 |
+
"outputs": [],
|
747 |
+
"source": [
|
748 |
+
"df_all['maccs'] = df_all['smiles'].parallel_apply(get_maccs)"
|
749 |
+
]
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"cell_type": "code",
|
753 |
+
"execution_count": 108,
|
754 |
+
"id": "59a6706d-dab9-4ee0-8ef6-33537a3622a4",
|
755 |
+
"metadata": {},
|
756 |
+
"outputs": [],
|
757 |
+
"source": [
|
758 |
+
"df_all.to_parquet('data/all_maccs.parquet')"
|
759 |
+
]
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"cell_type": "code",
|
763 |
+
"execution_count": 6,
|
764 |
+
"id": "4ccf2ee5-d369-4c0e-bb91-792765d661bf",
|
765 |
+
"metadata": {},
|
766 |
+
"outputs": [],
|
767 |
+
"source": [
|
768 |
+
"import numpy as np"
|
769 |
+
]
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"cell_type": "code",
|
773 |
+
"execution_count": 14,
|
774 |
+
"id": "8a4bbb18-e62f-4774-ac6b-8a1be68204c1",
|
775 |
+
"metadata": {},
|
776 |
+
"outputs": [],
|
777 |
+
"source": [
|
778 |
+
"df_all = pd.read_parquet('data/all_maccs.parquet')\n",
|
779 |
+
"df_all = df_all.dropna().reset_index(drop=True)"
|
780 |
+
]
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"execution_count": 15,
|
785 |
+
"id": "d210fe56-a7eb-4adc-a77a-14c0c6d0034e",
|
786 |
+
"metadata": {},
|
787 |
+
"outputs": [
|
788 |
+
{
|
789 |
+
"data": {
|
790 |
+
"text/plain": [
|
791 |
+
"2430135"
|
792 |
+
]
|
793 |
+
},
|
794 |
+
"execution_count": 15,
|
795 |
+
"metadata": {},
|
796 |
+
"output_type": "execute_result"
|
797 |
+
}
|
798 |
+
],
|
799 |
+
"source": [
|
800 |
+
"len(df_all)"
|
801 |
+
]
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"cell_type": "code",
|
805 |
+
"execution_count": 16,
|
806 |
+
"id": "d12b365d-98bd-4b61-b836-1a08d2e55418",
|
807 |
+
"metadata": {},
|
808 |
+
"outputs": [],
|
809 |
+
"source": [
|
810 |
+
"maccs = df_all['maccs'].to_numpy()\n",
|
811 |
+
"#df_reindex[df_reindex.duplicated(keep='first')].reset_index()"
|
812 |
+
]
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"cell_type": "code",
|
816 |
+
"execution_count": 17,
|
817 |
+
"id": "80c15210-1af3-436e-970b-f81fc596fb41",
|
818 |
+
"metadata": {},
|
819 |
+
"outputs": [],
|
820 |
+
"source": [
|
821 |
+
"df_maccs = pd.DataFrame(np.vstack(maccs))"
|
822 |
+
]
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"cell_type": "code",
|
826 |
+
"execution_count": 18,
|
827 |
+
"id": "30c314b8-8fe7-48ae-a2b8-149de1471b0c",
|
828 |
+
"metadata": {},
|
829 |
+
"outputs": [
|
830 |
+
{
|
831 |
+
"data": {
|
832 |
+
"text/plain": [
|
833 |
+
"0 int64\n",
|
834 |
+
"1 int64\n",
|
835 |
+
"2 int64\n",
|
836 |
+
"3 int64\n",
|
837 |
+
"4 int64\n",
|
838 |
+
"5 int64\n",
|
839 |
+
"dtype: object"
|
840 |
+
]
|
841 |
+
},
|
842 |
+
"execution_count": 18,
|
843 |
+
"metadata": {},
|
844 |
+
"output_type": "execute_result"
|
845 |
+
}
|
846 |
+
],
|
847 |
+
"source": [
|
848 |
+
"df_maccs.dtypes"
|
849 |
+
]
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"cell_type": "code",
|
853 |
+
"execution_count": 19,
|
854 |
+
"id": "70a0a820-4d0c-4472-af96-9c301c0ab204",
|
855 |
+
"metadata": {},
|
856 |
+
"outputs": [],
|
857 |
+
"source": [
|
858 |
+
"df_expand = pd.concat([df_all[['seq','smiles','affinity_uM']],df_maccs],axis=1)"
|
859 |
+
]
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"cell_type": "code",
|
863 |
+
"execution_count": 21,
|
864 |
+
"id": "13d092fa-5625-40d0-b7ec-e3405ea20279",
|
865 |
+
"metadata": {},
|
866 |
+
"outputs": [
|
867 |
+
{
|
868 |
+
"data": {
|
869 |
+
"text/html": [
|
870 |
+
"<div>\n",
|
871 |
+
"<style scoped>\n",
|
872 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
873 |
+
" vertical-align: middle;\n",
|
874 |
+
" }\n",
|
875 |
+
"\n",
|
876 |
+
" .dataframe tbody tr th {\n",
|
877 |
+
" vertical-align: top;\n",
|
878 |
+
" }\n",
|
879 |
+
"\n",
|
880 |
+
" .dataframe thead th {\n",
|
881 |
+
" text-align: right;\n",
|
882 |
+
" }\n",
|
883 |
+
"</style>\n",
|
884 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
885 |
+
" <thead>\n",
|
886 |
+
" <tr style=\"text-align: right;\">\n",
|
887 |
+
" <th></th>\n",
|
888 |
+
" <th>seq</th>\n",
|
889 |
+
" <th>smiles</th>\n",
|
890 |
+
" <th>affinity_uM</th>\n",
|
891 |
+
" <th>0</th>\n",
|
892 |
+
" <th>1</th>\n",
|
893 |
+
" <th>2</th>\n",
|
894 |
+
" <th>3</th>\n",
|
895 |
+
" <th>4</th>\n",
|
896 |
+
" <th>5</th>\n",
|
897 |
+
" </tr>\n",
|
898 |
+
" </thead>\n",
|
899 |
+
" <tbody>\n",
|
900 |
+
" <tr>\n",
|
901 |
+
" <th>0</th>\n",
|
902 |
+
" <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
|
903 |
+
" <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
|
904 |
+
" <td>500.000</td>\n",
|
905 |
+
" <td>2147483648</td>\n",
|
906 |
+
" <td>3242590208</td>\n",
|
907 |
+
" <td>1914732547</td>\n",
|
908 |
+
" <td>994116706</td>\n",
|
909 |
+
" <td>3748288829</td>\n",
|
910 |
+
" <td>124</td>\n",
|
911 |
+
" </tr>\n",
|
912 |
+
" <tr>\n",
|
913 |
+
" <th>1</th>\n",
|
914 |
+
" <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
|
915 |
+
" <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
|
916 |
+
" <td>0.023</td>\n",
|
917 |
+
" <td>131072</td>\n",
|
918 |
+
" <td>1109655552</td>\n",
|
919 |
+
" <td>2123376961</td>\n",
|
920 |
+
" <td>3477340882</td>\n",
|
921 |
+
" <td>2951175957</td>\n",
|
922 |
+
" <td>252</td>\n",
|
923 |
+
" </tr>\n",
|
924 |
+
" <tr>\n",
|
925 |
+
" <th>2</th>\n",
|
926 |
+
" <td>GMRVYLGADHAGYELKQRIIEHLKQTGHEPIDCGALRYDADDDYPA...</td>\n",
|
927 |
+
" <td>O[C@H]1O[C@H](CO[P](=O)(=O)=O)[C@H]([C@H]([C@H...</td>\n",
|
928 |
+
" <td>6300.000</td>\n",
|
929 |
+
" <td>67108864</td>\n",
|
930 |
+
" <td>1082523648</td>\n",
|
931 |
+
" <td>1879080960</td>\n",
|
932 |
+
" <td>461382690</td>\n",
|
933 |
+
" <td>3576355128</td>\n",
|
934 |
+
" <td>28</td>\n",
|
935 |
+
" </tr>\n",
|
936 |
+
" <tr>\n",
|
937 |
+
" <th>3</th>\n",
|
938 |
+
" <td>SMENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDTETEGVP...</td>\n",
|
939 |
+
" <td>OCC[C@@H]1CCCCN1c1cc(NCC2=CC=CN(C2)O)n2c(n1)c(...</td>\n",
|
940 |
+
" <td>0.210</td>\n",
|
941 |
+
" <td>2147484672</td>\n",
|
942 |
+
" <td>36176898</td>\n",
|
943 |
+
" <td>850664773</td>\n",
|
944 |
+
" <td>3978479102</td>\n",
|
945 |
+
" <td>1599828989</td>\n",
|
946 |
+
" <td>252</td>\n",
|
947 |
+
" </tr>\n",
|
948 |
+
" <tr>\n",
|
949 |
+
" <th>4</th>\n",
|
950 |
+
" <td>EFSEWFHNILEEAEIIDQRYPVKGMHVWMPHGFMIRKNTLKILRRI...</td>\n",
|
951 |
+
" <td>O[C@@H]1[C@@H](COS(=O)(=O)NC(=O)[C@@H]2CCC[NH2...</td>\n",
|
952 |
+
" <td>0.050</td>\n",
|
953 |
+
" <td>0</td>\n",
|
954 |
+
" <td>1858306115</td>\n",
|
955 |
+
" <td>4223456596</td>\n",
|
956 |
+
" <td>4018595822</td>\n",
|
957 |
+
" <td>4282121085</td>\n",
|
958 |
+
" <td>124</td>\n",
|
959 |
+
" </tr>\n",
|
960 |
+
" <tr>\n",
|
961 |
+
" <th>...</th>\n",
|
962 |
+
" <td>...</td>\n",
|
963 |
+
" <td>...</td>\n",
|
964 |
+
" <td>...</td>\n",
|
965 |
+
" <td>...</td>\n",
|
966 |
+
" <td>...</td>\n",
|
967 |
+
" <td>...</td>\n",
|
968 |
+
" <td>...</td>\n",
|
969 |
+
" <td>...</td>\n",
|
970 |
+
" <td>...</td>\n",
|
971 |
+
" </tr>\n",
|
972 |
+
" <tr>\n",
|
973 |
+
" <th>2430130</th>\n",
|
974 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
975 |
+
" <td>O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(...</td>\n",
|
976 |
+
" <td>8.000</td>\n",
|
977 |
+
" <td>0</td>\n",
|
978 |
+
" <td>612865025</td>\n",
|
979 |
+
" <td>3107729684</td>\n",
|
980 |
+
" <td>2146870234</td>\n",
|
981 |
+
" <td>4286578680</td>\n",
|
982 |
+
" <td>252</td>\n",
|
983 |
+
" </tr>\n",
|
984 |
+
" <tr>\n",
|
985 |
+
" <th>2430131</th>\n",
|
986 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
987 |
+
" <td>CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H...</td>\n",
|
988 |
+
" <td>8.000</td>\n",
|
989 |
+
" <td>0</td>\n",
|
990 |
+
" <td>136194</td>\n",
|
991 |
+
" <td>1025390336</td>\n",
|
992 |
+
" <td>1612680088</td>\n",
|
993 |
+
" <td>2071973584</td>\n",
|
994 |
+
" <td>252</td>\n",
|
995 |
+
" </tr>\n",
|
996 |
+
" <tr>\n",
|
997 |
+
" <th>2430132</th>\n",
|
998 |
+
" <td>RWEQTHLTYRIENYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVS...</td>\n",
|
999 |
+
" <td>ONC(=O)CC1(CCOCC1)S(=O)(=O)c1ccc(cc1)Oc1ccccc1</td>\n",
|
1000 |
+
" <td>0.023</td>\n",
|
1001 |
+
" <td>2147483648</td>\n",
|
1002 |
+
" <td>2081488896</td>\n",
|
1003 |
+
" <td>3124936893</td>\n",
|
1004 |
+
" <td>264668962</td>\n",
|
1005 |
+
" <td>4286183928</td>\n",
|
1006 |
+
" <td>124</td>\n",
|
1007 |
+
" </tr>\n",
|
1008 |
+
" <tr>\n",
|
1009 |
+
" <th>2430133</th>\n",
|
1010 |
+
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
1011 |
+
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
1012 |
+
" <td>125.000</td>\n",
|
1013 |
+
" <td>67108864</td>\n",
|
1014 |
+
" <td>1115688962</td>\n",
|
1015 |
+
" <td>1771869508</td>\n",
|
1016 |
+
" <td>4018431718</td>\n",
|
1017 |
+
" <td>3744193341</td>\n",
|
1018 |
+
" <td>124</td>\n",
|
1019 |
+
" </tr>\n",
|
1020 |
+
" <tr>\n",
|
1021 |
+
" <th>2430134</th>\n",
|
1022 |
+
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
1023 |
+
" <td>CC[Se]C(=N)N</td>\n",
|
1024 |
+
" <td>0.039</td>\n",
|
1025 |
+
" <td>16</td>\n",
|
1026 |
+
" <td>6144</td>\n",
|
1027 |
+
" <td>537396736</td>\n",
|
1028 |
+
" <td>2170880</td>\n",
|
1029 |
+
" <td>1510015504</td>\n",
|
1030 |
+
" <td>192</td>\n",
|
1031 |
+
" </tr>\n",
|
1032 |
+
" </tbody>\n",
|
1033 |
+
"</table>\n",
|
1034 |
+
"<p>2430135 rows × 9 columns</p>\n",
|
1035 |
+
"</div>"
|
1036 |
+
],
|
1037 |
+
"text/plain": [
|
1038 |
+
" seq \\\n",
|
1039 |
+
"0 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
|
1040 |
+
"1 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
|
1041 |
+
"2 GMRVYLGADHAGYELKQRIIEHLKQTGHEPIDCGALRYDADDDYPA... \n",
|
1042 |
+
"3 SMENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDTETEGVP... \n",
|
1043 |
+
"4 EFSEWFHNILEEAEIIDQRYPVKGMHVWMPHGFMIRKNTLKILRRI... \n",
|
1044 |
+
"... ... \n",
|
1045 |
+
"2430130 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
1046 |
+
"2430131 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
1047 |
+
"2430132 RWEQTHLTYRIENYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVS... \n",
|
1048 |
+
"2430133 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
1049 |
+
"2430134 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
1050 |
+
"\n",
|
1051 |
+
" smiles affinity_uM \\\n",
|
1052 |
+
"0 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.000 \n",
|
1053 |
+
"1 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.023 \n",
|
1054 |
+
"2 O[C@H]1O[C@H](CO[P](=O)(=O)=O)[C@H]([C@H]([C@H... 6300.000 \n",
|
1055 |
+
"3 OCC[C@@H]1CCCCN1c1cc(NCC2=CC=CN(C2)O)n2c(n1)c(... 0.210 \n",
|
1056 |
+
"4 O[C@@H]1[C@@H](COS(=O)(=O)NC(=O)[C@@H]2CCC[NH2... 0.050 \n",
|
1057 |
+
"... ... ... \n",
|
1058 |
+
"2430130 O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... 8.000 \n",
|
1059 |
+
"2430131 CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... 8.000 \n",
|
1060 |
+
"2430132 ONC(=O)CC1(CCOCC1)S(=O)(=O)c1ccc(cc1)Oc1ccccc1 0.023 \n",
|
1061 |
+
"2430133 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.000 \n",
|
1062 |
+
"2430134 CC[Se]C(=N)N 0.039 \n",
|
1063 |
+
"\n",
|
1064 |
+
" 0 1 2 3 4 5 \n",
|
1065 |
+
"0 2147483648 3242590208 1914732547 994116706 3748288829 124 \n",
|
1066 |
+
"1 131072 1109655552 2123376961 3477340882 2951175957 252 \n",
|
1067 |
+
"2 67108864 1082523648 1879080960 461382690 3576355128 28 \n",
|
1068 |
+
"3 2147484672 36176898 850664773 3978479102 1599828989 252 \n",
|
1069 |
+
"4 0 1858306115 4223456596 4018595822 4282121085 124 \n",
|
1070 |
+
"... ... ... ... ... ... ... \n",
|
1071 |
+
"2430130 0 612865025 3107729684 2146870234 4286578680 252 \n",
|
1072 |
+
"2430131 0 136194 1025390336 1612680088 2071973584 252 \n",
|
1073 |
+
"2430132 2147483648 2081488896 3124936893 264668962 4286183928 124 \n",
|
1074 |
+
"2430133 67108864 1115688962 1771869508 4018431718 3744193341 124 \n",
|
1075 |
+
"2430134 16 6144 537396736 2170880 1510015504 192 \n",
|
1076 |
+
"\n",
|
1077 |
+
"[2430135 rows x 9 columns]"
|
1078 |
+
]
|
1079 |
+
},
|
1080 |
+
"execution_count": 21,
|
1081 |
+
"metadata": {},
|
1082 |
+
"output_type": "execute_result"
|
1083 |
+
}
|
1084 |
+
],
|
1085 |
+
"source": [
|
1086 |
+
"df_expand"
|
1087 |
+
]
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"cell_type": "code",
|
1091 |
+
"execution_count": 22,
|
1092 |
+
"id": "30f7fff7-3cfe-41c8-97c9-666f3e256222",
|
1093 |
+
"metadata": {},
|
1094 |
+
"outputs": [
|
1095 |
+
{
|
1096 |
+
"data": {
|
1097 |
+
"text/plain": [
|
1098 |
+
"Index(['seq', 'smiles', 'affinity_uM', 0, 1, 2, 3, 4, 5], dtype='object')"
|
1099 |
+
]
|
1100 |
+
},
|
1101 |
+
"execution_count": 22,
|
1102 |
+
"metadata": {},
|
1103 |
+
"output_type": "execute_result"
|
1104 |
+
}
|
1105 |
+
],
|
1106 |
+
"source": [
|
1107 |
+
"df_expand.columns"
|
1108 |
+
]
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"cell_type": "code",
|
1112 |
+
"execution_count": 23,
|
1113 |
+
"id": "16d2b26e-984f-4c71-af19-a3e711ed9ca2",
|
1114 |
+
"metadata": {},
|
1115 |
+
"outputs": [],
|
1116 |
+
"source": [
|
1117 |
+
"df_reindex = df_expand.set_index([0,1,2,3,4,5,'seq'])"
|
1118 |
+
]
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"cell_type": "code",
|
1122 |
+
"execution_count": 24,
|
1123 |
+
"id": "27fa2150-8152-444b-ba5b-24bea39fc098",
|
1124 |
+
"metadata": {},
|
1125 |
+
"outputs": [
|
1126 |
+
{
|
1127 |
+
"data": {
|
1128 |
+
"text/plain": [
|
1129 |
+
"Index(['smiles', 'affinity_uM'], dtype='object')"
|
1130 |
+
]
|
1131 |
+
},
|
1132 |
+
"execution_count": 24,
|
1133 |
+
"metadata": {},
|
1134 |
+
"output_type": "execute_result"
|
1135 |
+
}
|
1136 |
+
],
|
1137 |
+
"source": [
|
1138 |
+
"df_reindex.columns"
|
1139 |
+
]
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"cell_type": "code",
|
1143 |
+
"execution_count": 67,
|
1144 |
+
"id": "89edacbc-52f3-4a76-90b0-95273f5e53b3",
|
1145 |
+
"metadata": {},
|
1146 |
+
"outputs": [],
|
1147 |
+
"source": [
|
1148 |
+
"df_nr = df_reindex[~df_reindex.duplicated(keep='first')].reset_index()\n",
|
1149 |
+
"df_nr = df_nr.drop(columns=[0,1,2,3,4,5])"
|
1150 |
+
]
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"cell_type": "code",
|
1154 |
+
"execution_count": 68,
|
1155 |
+
"id": "6a704c5e-68a6-418f-bcad-8688a13ca1d6",
|
1156 |
+
"metadata": {},
|
1157 |
+
"outputs": [],
|
1158 |
+
"source": [
|
1159 |
+
"# final sanity checks"
|
1160 |
+
]
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"cell_type": "code",
|
1164 |
+
"execution_count": 69,
|
1165 |
+
"id": "0cad3882-975d-4693-aad1-63ec26646bd0",
|
1166 |
+
"metadata": {},
|
1167 |
+
"outputs": [
|
1168 |
+
{
|
1169 |
+
"name": "stderr",
|
1170 |
+
"output_type": "stream",
|
1171 |
+
"text": [
|
1172 |
+
"/ccs/proj/stf006/glaser/conda-envs/bio/lib/python3.9/site-packages/pandas/core/arraylike.py:358: RuntimeWarning: divide by zero encountered in log\n",
|
1173 |
+
" result = getattr(ufunc, method)(*inputs, **kwargs)\n"
|
1174 |
+
]
|
1175 |
+
}
|
1176 |
+
],
|
1177 |
+
"source": [
|
1178 |
+
"df_nr['neg_log10_affinity_M'] = 6-np.log(df_nr['affinity_uM'])/np.log(10)"
|
1179 |
+
]
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"cell_type": "code",
|
1183 |
+
"execution_count": 70,
|
1184 |
+
"id": "c200e29a-3f14-41f4-b620-ccce0eb0d5ce",
|
1185 |
+
"metadata": {},
|
1186 |
+
"outputs": [
|
1187 |
+
{
|
1188 |
+
"data": {
|
1189 |
+
"text/html": [
|
1190 |
+
"<div>\n",
|
1191 |
+
"<style scoped>\n",
|
1192 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1193 |
+
" vertical-align: middle;\n",
|
1194 |
+
" }\n",
|
1195 |
+
"\n",
|
1196 |
+
" .dataframe tbody tr th {\n",
|
1197 |
+
" vertical-align: top;\n",
|
1198 |
+
" }\n",
|
1199 |
+
"\n",
|
1200 |
+
" .dataframe thead th {\n",
|
1201 |
+
" text-align: right;\n",
|
1202 |
+
" }\n",
|
1203 |
+
"</style>\n",
|
1204 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1205 |
+
" <thead>\n",
|
1206 |
+
" <tr style=\"text-align: right;\">\n",
|
1207 |
+
" <th></th>\n",
|
1208 |
+
" <th>seq</th>\n",
|
1209 |
+
" <th>smiles</th>\n",
|
1210 |
+
" <th>affinity_uM</th>\n",
|
1211 |
+
" <th>neg_log10_affinity_M</th>\n",
|
1212 |
+
" </tr>\n",
|
1213 |
+
" </thead>\n",
|
1214 |
+
" <tbody>\n",
|
1215 |
+
" <tr>\n",
|
1216 |
+
" <th>0</th>\n",
|
1217 |
+
" <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
|
1218 |
+
" <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
|
1219 |
+
" <td>500.000</td>\n",
|
1220 |
+
" <td>3.301030</td>\n",
|
1221 |
+
" </tr>\n",
|
1222 |
+
" <tr>\n",
|
1223 |
+
" <th>1</th>\n",
|
1224 |
+
" <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
|
1225 |
+
" <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
|
1226 |
+
" <td>0.023</td>\n",
|
1227 |
+
" <td>7.638272</td>\n",
|
1228 |
+
" </tr>\n",
|
1229 |
+
" <tr>\n",
|
1230 |
+
" <th>2</th>\n",
|
1231 |
+
" <td>GMRVYLGADHAGYELKQRIIEHLKQTGHEPIDCGALRYDADDDYPA...</td>\n",
|
1232 |
+
" <td>O[C@H]1O[C@H](CO[P](=O)(=O)=O)[C@H]([C@H]([C@H...</td>\n",
|
1233 |
+
" <td>6300.000</td>\n",
|
1234 |
+
" <td>2.200659</td>\n",
|
1235 |
+
" </tr>\n",
|
1236 |
+
" <tr>\n",
|
1237 |
+
" <th>3</th>\n",
|
1238 |
+
" <td>SMENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDTETEGVP...</td>\n",
|
1239 |
+
" <td>OCC[C@@H]1CCCCN1c1cc(NCC2=CC=CN(C2)O)n2c(n1)c(...</td>\n",
|
1240 |
+
" <td>0.210</td>\n",
|
1241 |
+
" <td>6.677781</td>\n",
|
1242 |
+
" </tr>\n",
|
1243 |
+
" <tr>\n",
|
1244 |
+
" <th>4</th>\n",
|
1245 |
+
" <td>EFSEWFHNILEEAEIIDQRYPVKGMHVWMPHGFMIRKNTLKILRRI...</td>\n",
|
1246 |
+
" <td>O[C@@H]1[C@@H](COS(=O)(=O)NC(=O)[C@@H]2CCC[NH2...</td>\n",
|
1247 |
+
" <td>0.050</td>\n",
|
1248 |
+
" <td>7.301030</td>\n",
|
1249 |
+
" </tr>\n",
|
1250 |
+
" <tr>\n",
|
1251 |
+
" <th>...</th>\n",
|
1252 |
+
" <td>...</td>\n",
|
1253 |
+
" <td>...</td>\n",
|
1254 |
+
" <td>...</td>\n",
|
1255 |
+
" <td>...</td>\n",
|
1256 |
+
" </tr>\n",
|
1257 |
+
" <tr>\n",
|
1258 |
+
" <th>1849400</th>\n",
|
1259 |
+
" <td>KQISVRGLAGVENVTELKKNFNRHLHFTLVKDRNVATPRDYYFALA...</td>\n",
|
1260 |
+
" <td>O[C@@H]1[C@H](O)[C@H](O[C@H]1n1cnc2c1ncnc2N)CO...</td>\n",
|
1261 |
+
" <td>250.000</td>\n",
|
1262 |
+
" <td>3.602060</td>\n",
|
1263 |
+
" </tr>\n",
|
1264 |
+
" <tr>\n",
|
1265 |
+
" <th>1849401</th>\n",
|
1266 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
1267 |
+
" <td>O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(...</td>\n",
|
1268 |
+
" <td>8.000</td>\n",
|
1269 |
+
" <td>5.096910</td>\n",
|
1270 |
+
" </tr>\n",
|
1271 |
+
" <tr>\n",
|
1272 |
+
" <th>1849402</th>\n",
|
1273 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
1274 |
+
" <td>CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H...</td>\n",
|
1275 |
+
" <td>8.000</td>\n",
|
1276 |
+
" <td>5.096910</td>\n",
|
1277 |
+
" </tr>\n",
|
1278 |
+
" <tr>\n",
|
1279 |
+
" <th>1849403</th>\n",
|
1280 |
+
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
1281 |
+
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
1282 |
+
" <td>125.000</td>\n",
|
1283 |
+
" <td>3.903090</td>\n",
|
1284 |
+
" </tr>\n",
|
1285 |
+
" <tr>\n",
|
1286 |
+
" <th>1849404</th>\n",
|
1287 |
+
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
1288 |
+
" <td>CC[Se]C(=N)N</td>\n",
|
1289 |
+
" <td>0.039</td>\n",
|
1290 |
+
" <td>7.408935</td>\n",
|
1291 |
+
" </tr>\n",
|
1292 |
+
" </tbody>\n",
|
1293 |
+
"</table>\n",
|
1294 |
+
"<p>1849405 rows × 4 columns</p>\n",
|
1295 |
+
"</div>"
|
1296 |
+
],
|
1297 |
+
"text/plain": [
|
1298 |
+
" seq \\\n",
|
1299 |
+
"0 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
|
1300 |
+
"1 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
|
1301 |
+
"2 GMRVYLGADHAGYELKQRIIEHLKQTGHEPIDCGALRYDADDDYPA... \n",
|
1302 |
+
"3 SMENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDTETEGVP... \n",
|
1303 |
+
"4 EFSEWFHNILEEAEIIDQRYPVKGMHVWMPHGFMIRKNTLKILRRI... \n",
|
1304 |
+
"... ... \n",
|
1305 |
+
"1849400 KQISVRGLAGVENVTELKKNFNRHLHFTLVKDRNVATPRDYYFALA... \n",
|
1306 |
+
"1849401 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
1307 |
+
"1849402 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
1308 |
+
"1849403 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
1309 |
+
"1849404 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
1310 |
+
"\n",
|
1311 |
+
" smiles affinity_uM \\\n",
|
1312 |
+
"0 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.000 \n",
|
1313 |
+
"1 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.023 \n",
|
1314 |
+
"2 O[C@H]1O[C@H](CO[P](=O)(=O)=O)[C@H]([C@H]([C@H... 6300.000 \n",
|
1315 |
+
"3 OCC[C@@H]1CCCCN1c1cc(NCC2=CC=CN(C2)O)n2c(n1)c(... 0.210 \n",
|
1316 |
+
"4 O[C@@H]1[C@@H](COS(=O)(=O)NC(=O)[C@@H]2CCC[NH2... 0.050 \n",
|
1317 |
+
"... ... ... \n",
|
1318 |
+
"1849400 O[C@@H]1[C@H](O)[C@H](O[C@H]1n1cnc2c1ncnc2N)CO... 250.000 \n",
|
1319 |
+
"1849401 O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... 8.000 \n",
|
1320 |
+
"1849402 CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... 8.000 \n",
|
1321 |
+
"1849403 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.000 \n",
|
1322 |
+
"1849404 CC[Se]C(=N)N 0.039 \n",
|
1323 |
+
"\n",
|
1324 |
+
" neg_log10_affinity_M \n",
|
1325 |
+
"0 3.301030 \n",
|
1326 |
+
"1 7.638272 \n",
|
1327 |
+
"2 2.200659 \n",
|
1328 |
+
"3 6.677781 \n",
|
1329 |
+
"4 7.301030 \n",
|
1330 |
+
"... ... \n",
|
1331 |
+
"1849400 3.602060 \n",
|
1332 |
+
"1849401 5.096910 \n",
|
1333 |
+
"1849402 5.096910 \n",
|
1334 |
+
"1849403 3.903090 \n",
|
1335 |
+
"1849404 7.408935 \n",
|
1336 |
+
"\n",
|
1337 |
+
"[1849405 rows x 4 columns]"
|
1338 |
+
]
|
1339 |
+
},
|
1340 |
+
"execution_count": 70,
|
1341 |
+
"metadata": {},
|
1342 |
+
"output_type": "execute_result"
|
1343 |
+
}
|
1344 |
+
],
|
1345 |
+
"source": [
|
1346 |
+
"df_nr"
|
1347 |
+
]
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"cell_type": "code",
|
1351 |
+
"execution_count": 72,
|
1352 |
+
"id": "7f4027a2-0a5f-47bf-8a34-0c6a73b9b112",
|
1353 |
+
"metadata": {},
|
1354 |
+
"outputs": [],
|
1355 |
+
"source": [
|
1356 |
+
"df = df_nr[np.isfinite(df_nr['neg_log10_affinity_M'])]"
|
1357 |
+
]
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"cell_type": "code",
|
1361 |
+
"execution_count": 86,
|
1362 |
+
"id": "c558f3f6-9fe7-4361-8272-23a54368fdda",
|
1363 |
+
"metadata": {},
|
1364 |
+
"outputs": [],
|
1365 |
+
"source": [
|
1366 |
+
"df.to_parquet('data/all.parquet')"
|
1367 |
+
]
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"cell_type": "code",
|
1371 |
+
"execution_count": 3,
|
1372 |
+
"id": "4e2d89f7-f6ea-41de-a13b-4a184b4fd580",
|
1373 |
+
"metadata": {},
|
1374 |
+
"outputs": [],
|
1375 |
+
"source": [
|
1376 |
+
"df = pd.read_parquet('data/all.parquet')"
|
1377 |
+
]
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"cell_type": "code",
|
1381 |
+
"execution_count": 5,
|
1382 |
+
"id": "d91c0d91-474c-4ab2-9a5e-3b7861f7a832",
|
1383 |
+
"metadata": {},
|
1384 |
+
"outputs": [
|
1385 |
+
{
|
1386 |
+
"data": {
|
1387 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbqUlEQVR4nO3df5wddX3v8debIJdIUERkkQQI1tCWGlFcfghc2VjxEaBtsGoLIr8sjVG4SG/qvSkIBpFb+rBYy71gTDFGEBqvxdBcE0GErmgj3gS1LAk/jCFIEiAXxMgCgiuf+8fMwrics/uds+fMnnPyfj4e57Fn5vudmc/kZPdzvt+Z+X4VEZiZmaXYaaIDMDOzzuGkYWZmyZw0zMwsmZOGmZklc9IwM7NkO090AK221157xfTp0ys95tNPP81uu+1W6TFbzefUGXxOnaHdz+muu+56PCJeV6us65PG9OnTWbt2baXH7O/vp6+vr9JjtprPqTP4nDpDu5+TpIfqlVXePSVptqT7JW2QtKBG+amS7s5fqyUdUijbJGlA0o8lVZsJzMys2paGpEnAVcBxwGZgjaQVEbG+UO1B4NiIeFLS8cBi4IhC+ayIeLyyoM3M7EVVtzQOBzZExMaIeB5YBswpVoiI1RHxZL54JzCt4hjNzKyOqpPGVODhwvLmfF09fwF8s7AcwLck3SVpbgviMzOzUVR9IVw11tUc/ErSLLKkcUxh9dERsVXS3sCtku6LiDtqbDsXmAvQ09NDf3//uAMvY3BwsPJjtprPqTP4nDpDJ59T1UljM7BfYXkasHVkJUlvBq4Bjo+IJ4bXR8TW/Oc2ScvJurteljQiYjHZtRB6e3uj6rsU2v3OiEb4nDqDz6kzdPI5Vd09tQaYIelASbsAJwMrihUk7Q98HTgtIh4orN9N0u7D74F3A/dUFrmZmVXb0oiIIUnnArcAk4AlEbFO0ry8fBFwMfBa4GpJAEMR0Qv0AMvzdTsDN0TEzVXGb2a2o6v84b6IWAWsGrFuUeH92cDZNbbbCBwycr2ZmVWn658IN6vK9AUrX3y/6fITJzASs9bxgIVmZpbMScPMzJI5aZiZWTInDTMzS+akYWZmyZw0zMwsmZOGmZklc9IwM7NkThq2w5m+YCXTF6xkYMv233ogz8zG5qRhZmbJnDTMzCyZk4aZmSVz0jAzs2ROGmZmlsxJw8zMkjlpmJlZMk/CZFZHvUmVUiZb8oRM1q3c0jAzs2ROGmZmlsxJw8zMkjlpmJlZMicNMzNL5qRhZmbJnDTMzCyZk4aZmSVz0jAzs2ROGmZmlsxJw8zMkjlpmJlZMg9YaJagOACh2Y7MLQ0zM0vmloZZi3mYdOsmThpm4+BuK9vRVN49JWm2pPslbZC0oEb5qZLuzl+rJR2Suq2ZmbVWpUlD0iTgKuB44GDgFEkHj6j2IHBsRLwZuBRYXGJbMzNroapbGocDGyJiY0Q8DywD5hQrRMTqiHgyX7wTmJa6rZmZtVbV1zSmAg8XljcDR4xS/y+Ab5bdVtJcYC5AT08P/f39DYbbmMHBwcqP2WrddE7zZw4B0DM5e1/vvIbrNVOr/w276XMa5nNqL1UnDdVYFzUrSrPIksYxZbeNiMXk3Vq9vb3R19dXOtDx6O/vp+pjtlo3ndOZ+cXr+TOHuGJgZzad2jdqvWaqd6xm6abPaZjPqb1UnTQ2A/sVlqcBW0dWkvRm4Brg+Ih4osy2ZmbWOlVf01gDzJB0oKRdgJOBFcUKkvYHvg6cFhEPlNnWzMxaq9KWRkQMSToXuAWYBCyJiHWS5uXli4CLgdcCV0sCGIqI3nrbVhm/mdmOrvKH+yJiFbBqxLpFhfdnA2enbmtmZtXxE+G2w6tymA8PKWKdzgMWmplZMicNMzNL5qRhZmbJnDTMzCyZk4aZmSXz3VNmBZ4fw2x0bmmYmVkyJw0zM0vmpGFmZsmcNMzMLJmThpmZJXPSMDOzZE4aZmaWzEnDzMySOWmYmVmyUklD0nGtCsTMzNpf2ZbGLZI2SPq4pNe1JCIzM2tbZZPGO4E1wKXAw5JukHRs88MyM7N2VCppRER/RJwCTAUuAnqBf5N0r6SPSXpNK4I0M7P20NCF8Ih4IiI+ExEHAccBjwOfBbZIWippZjODNDOz9jCuu6cknQCcBxwJbAOuBY4FfijpI+MPz8zM2knppCFpH0kXSnoQ+AawB/BBYL+ImAe8EfgCcHEzAzUzs4lXahImSTcCfwT8CvgKcHVErCvWiYjfSLoB+GjTojQzs7ZQdua+GcD5wHURMThKvQFgVqNBmZlZeyqbNP4IeCQifj2yQNLOwL4R8bOIeAr4TjMCNDOz9lH2msaDwFvrlB2Sl5uZWZcqmzQ0StkrgBfGEYuZmbW5MbunJO0B7FlYNVXSG0ZUmwycATzavNDMzKzdpFzT+BjwSSDy17/Uqae8npmZdamUpHETsIksKSwBPg38dESd54D1EXF3M4MzM7P2MmbSiIj/AP4DQFIAKyPi8VYHZmZm7afULbcR8eVWBWJmZu0v5UL47cBHI+K+/P1oIiL+cIz9zQb+EZgEXBMRl48o/z3gS8ChwIUR8feFsk3AU8BvgKGI6B0rfjMza56UlkbxNtudyC6Gp9R9eaE0CbiKbGTczcAaSSsiYn2h2s/JBkE8qc5uZrl7zLrB9AUrX3y/6fITJzASs3Qp1zRmFd73jfN4hwMbImIjgKRlwBzgxaQREduAbZL8W2Rm1mYUMVrDockHk94HzI6Is/Pl04AjIuLcGnUXAoMjuqceBJ4ka+18ISIW1znOXGAuQE9Pz9uWLVvW7FMZ1eDgIFOmTKn0mK3WTec0sGU7AD2T4bFnJziY3Mypr27Kfrrpcxrmc6rerFmz7qrX/Z9yTeMdZQ4WEXeMtrtam5TY/dERsVXS3sCtku6rdbw8mSwG6O3tjb6+vhKHGL/+/n6qPmarddM5nZl3C82fOcQVA2WHX2uNTaf2NWU/3fQ5DfM5tZeU35h+0v6wK683aZQ6m4H9CsvTgK0J+wYgIrbmP7dJWk7W3TVakjIzsyZKSRrNHOJ8DTBD0oHAFuBk4AMpG0raDdgpIp7K378b+FQTYzMzszGkXAhv2hDnETEk6VzgFrIWyZKIWCdpXl6+SNI+wFrgVcALks4HDgb2ApZLGo77hoi4uVmxmZnZ2Crv0I2IVcCqEesWFd4/StZtNdIvyYZfNzOzCVL5w31m9nJ+ZsM6RaUP95mZWWer+uE+s8r427tZ85Wduc/MzHZgpS+E5zP5/RXwdmAq2a2zq4HPRcQvmhmcmZm1l1ItDUmHAD8B/gbYlWzMqF2BC4AHJM1seoRmZtY2yrY0rgSeAHoj4qHhlZKmAzcD/xPoa1ZwZmbWXspe0zgMuKiYMAAiYhPZ/OCHNykuMzNrQ2WTxhNk84HX8qu83MzMulTZpPF54OOSdi2ulDQZ+GuyCZbMzKxLpTwRXhwUUMABwM8krQIeA3qAE4BngVe2IkgzM2sPKRfCP1Fn/ek11l0IXNx4OGatUXzQz8wal/JEuB8ANDMzwE+Em5lZCU4aZmaWrHTSkDRX0o8kPSPpNyNfrQjSzMzaQ9lhRE4ne+p7DdnwIV8CvkI2QdJP8fSrZmZdrWxL43zgb4GP5MtXR8QZwBvIbrn1w31mZl2sbNKYAdwBvJC/dgGIiCeBy4CPNTU6MzNrK2WTxrPAThERwKNkLYxhg8C+zQrMzMzaT9lRbgeANwLfBr4LXCDpQWAIWAjc19TozMysrZRNGot5qXVxEVny+F6+/BRwUnPCMjOzdlQqaUTEVwvvN0j6A+AoYDKwOiIeb3J8ZmbWRkpP91oUEU8DtzYpFjMza3ONzBE+iWywwpFzhF8XEX64z8ysi5V9uO8AYB3wRWA2sHf+cwlwT15uZmZdquwtt/8LeBVwTETsHxGHRcT+wH8GXk32tLiZmXWpsknjncDfRMTq4sqI+HfggrzczMy6VNmkMQhsq1O2DXhmfOGYmVk7K5s0vgLMq1P2YeDa8YVjZmbtLGWO8A8VFn8CvF/SAHAjL80R/j5gd+CbrQjSzMzaQ8ott9fUWDcN+IMa668CFo0rIjMza1spSePAlkdhZmYdYcykEREPVRGImZm1v4bmCJf0JknnSLpI0kclvanEtrMl3S9pg6QFNcp/T9L3JT0n6a/LbGtmZq1VahgRSTsDS4FTABWKQtINwJmjDSWSD0FyFXAcsBlYI2lFRKwvVPs5cB4jRsxN3NbMzFqobEvjk8CfAReTXeuYnP+8GPjz/OdoDgc2RMTGiHgeWAbMKVaIiG0RsQb4ddltzcystZRNwpdYOZtwaUlEXFqj7GLgrIioe+Fc0vuA2RFxdr58GnBERJxbo+5CYDAi/r6BbecCcwF6enretmzZsuRzbIbBwUGmTJlS6TFbrRPPaWDL9lHLeybDY89WFEyDZk59dan6nfg5jcXnVL1Zs2bdFRG9tcrKjnK7L/D9OmWrgQvH2F411qVmreRtI2Ix2YRR9Pb2Rl9fX+IhmqO/v5+qj9lqnXhOZy5YOWr5/JlDXDEwrtkBWm7TqX2l6nfi5zQWn1N7Kds9tRU4uk7ZUXn5aDYD+xWWpyVs04xtzcysCcp+zboeuFDSC/n7R4B9gJPJWhl/N8b2a4AZkg4km4fjZOADiccez7ZmZtYEZZPGQrI5wi/J3w8T8M/5+roiYkjSucAtwCSy6yPrJM3LyxdJ2gdYSzYE+wuSzgcOjohf1tq2ZPxmZjYOZecIHwI+IOky4B3AnmS3yH4n9dbXiFgFrBqxblHh/aNkXU9J25qZWXWSk4akXYBHyZ7FWEE2g5+Zme1Aki+E589GDAG/al04ZmbWzsrePXUT2TDoZma2Ayp7IfybwJWS/oUsgTzCiGclIuL25oRmZmbtpmzSuDH/+af5a1iQ3UEVZHc2mVVmeuEhvk2XnziBkZh1v7JJY1ZLojAzs45Q9pbb7wBIehXwJmAq2YN290TEL5sfntmOza0oazelB97JByacD0zhpS6pQUmfiYhPNzk+MzNrI2Xn07gEuIhs3vBlwGNAD9n8GpdI2jkiFjY7SDMzaw9lWxp/CVwRER8vrFsH3C5pO9lw5AubFJtZadPHGNnWzMan7HMaryYb+6mWm/NyMzPrUmWTxg+Aw+qUHZaXm5lZlyrbPXUesFzSEPA1Xrqm8WfAh4A5kl5MRBHxQrMCNTOziVc2adyd/7w8fxUJGCgsRwP7NzOzNlb2j/qnSJ+e1czMukzZh/sWtigOMzPrAGUvhJuZ2Q7MScPMzJI5aZiZWTInDTMzS+akYWZmyZw0zMwsmZOGmZklc9IwM7NkThpmZpbMScPMzJI5aZiZWTInDTMzS+akYWZmyZw0zMwsmZOGmZklc9IwM7NkThpmZpas8qQhabak+yVtkLSgRrkkXZmX3y3p0ELZJkkDkn4saW21kZuZWdk5wsdF0iTgKuA4YDOwRtKKiFhfqHY8MCN/HQF8Pv85bFZEPF5RyGZmVlB1S+NwYENEbIyI54FlwJwRdeYA10bmTmAPSa+vOE4zM6uh0pYGMBV4uLC8md9uRdSrMxV4BAjgW5IC+EJELK51EElzgbkAPT099Pf3NyX4VIODg5Ufs9Xa+ZzmzxxqaLueyY1vOxFS/v3b+XNqlM+pvVSdNFRjXZSoc3REbJW0N3CrpPsi4o6XVc6SyWKA3t7e6OvrG0fI5fX391P1MVutnc/pzAUrG9pu/swhrhio+ldgHAaefvHtpstPrFmlnT+nRvmc2kvV3VObgf0Ky9OAral1ImL45zZgOVl3l5mZVaTqpLEGmCHpQEm7ACcDK0bUWQGcnt9FdSSwPSIekbSbpN0BJO0GvBu4p8rgzcx2dJW2zSNiSNK5wC3AJGBJRKyTNC8vXwSsAk4ANgDPAGflm/cAyyUNx31DRNxcZfxmZju6yjt0I2IVWWIorltUeB/AOTW22wgc0vIAzcysLj8RbmZmyZw0zMwsWQfdb2j2kukN3mZrZuPjloaZmSVz0jAzs2ROGmZmlszXNMw6UPGaTr0hRcxawS0NMzNL5qRhZmbJnDTMzCyZk4aZmSVz0jAzs2ROGmZmlsxJw8zMkjlpmJlZMicNMzNL5qRhZmbJnDTMzCyZk4aZmSVz0jAzs2Qe5daswxVHvF06e7cJjMR2BE4a1jE8xavZxHP3lJmZJXPSMDOzZO6esrbmLimz9uKWhpmZJXPSMDOzZE4aZmaWzEnDzMySOWmYdZGBLduZvmClbyCwlnHSMDOzZL7l1qxLFVsbmy4/cQIjsW7ipGFtx10rZu3LScMmjJNDddzqsGap/JqGpNmS7pe0QdKCGuWSdGVefrekQ1O3NbOxDV8od9K2RlSaNCRNAq4CjgcOBk6RdPCIascDM/LXXODzJbY1M7MWqrp76nBgQ0RsBJC0DJgDrC/UmQNcGxEB3ClpD0mvB6YnbDuhhr+5zZ85RN/EhtJ0A1u2c6a/mXad1NaGu7RsWNVJYyrwcGF5M3BEQp2pidsCIGkuWSsFYFDS/eOIubTzYK/zPsjjVR6zAntBd53TeT6nZPq7Zu+xlK77nGj/czqgXkHVSUM11kVinZRts5URi4HF5UJrHklrI6J3oo7fCj6nzuBz6gydfE5VJ43NwH6F5WnA1sQ6uyRsa2ZmLVT13VNrgBmSDpS0C3AysGJEnRXA6fldVEcC2yPikcRtzcyshSptaUTEkKRzgVuAScCSiFgnaV5evghYBZwAbACeAc4abdsq4y9hwrrGWsjn1Bl8Tp2hY89J2U1KZmZmY/OAhWZmlsxJw8zMkjlptICkhZK2SPpx/jphomNqVLcO3SJpk6SB/PNZO9HxNELSEknbJN1TWLenpFsl/ST/+ZqJjLGsOufU0b9PkvaT9G+S7pW0TtLH8vUd+Vk5abTOP0TEW/LXqokOphE7wNAts/LPpyPvlweWArNHrFsA3BYRM4Db8uVOspSXnxN09u/TEDA/In4fOBI4J/896sjPyknDRvPisC8R8TwwPHSLtYGIuAP4+YjVc4Av5++/DJxUZUzjVeecOlpEPBIRP8zfPwXcSzbCRUd+Vk4arXNuPkrvkk5pdtZQb0iXbhDAtyTdlQ870y168ueayH/uPcHxNEs3/D4haTrwVuAHdOhn5aTRIEnflnRPjdccspF5fwd4C/AIcMVExjoOyUO3dKCjI+JQsq63cyS9Y6IDsrq64vdJ0hTgRuD8iPjlRMfTKE/C1KCIeFdKPUn/BHyjxeG0SsqwLx0pIrbmP7dJWk7WFXfHxEbVFI9Jen1EPJKPDr1togMar4h4bPh9p/4+SXoFWcK4PiK+nq/uyM/KLY0WyP8DDHsPcE+9um2uK4dukbSbpN2H3wPvpnM/o5FWAGfk788A/nUCY2mKTv99kiTgi8C9EfHZQlFHflZ+IrwFJF1H1pQOYBPw4eG+y06T3974OV4auuWyiY1o/CS9AVieL+4M3NCJ5yXpn4E+smG2HwM+CdwE/G9gf+BnwPsjomMuLNc5pz46+PdJ0jHAd4EB4IV89QVk1zU67rNy0jAzs2TunjIzs2ROGmZmlsxJw8zMkjlpmJlZMicNMzNL5qRhZmbJnDTMzCyZk4a1lXzuhK58eEjSh/K5E56X9IvR1jf671BrO0knSfqvDca8VFLkr/4RZWcWyg6qsW1fofxd+bpPFNZtbiQmm1hOGmYVkLQvsBhYDbwTeNdo64FrgLc3cKha250ENJQ0co/m+/xonfKngNNqrD89Lyv6Ur6vTpsTw3IesNCsGjPIhmL5ckR8b6z1EbGZbMDIUhrdbgzPRcSdo5R/HfigpIsjH2JC0mTgvWSD9J1ZiG8LsEXS/2tyjFYRtzSsI+TTzn5f0rOStku6SdLv1qh3iqT7JP0qn871TyT1j+xaaXJsb5R0naQH8/g2Svr88LwPkpYCw8e/Le+aWVpvfb7Nb3UzDS9LmiFppaRBSQ9JuljSTiPrFZaXkg2GN7XQLbRJ0vvy94fUOJ9+Sd8v8U9wHXAAcExh3XvIkuGNJfZjHcAtDWt7kmYDK4HbgT8HpgCfAr4n6S35t1ckHQdcTzZ66HyyQe8+B+wKPNDCEPcl+3Z/PvAk8AayAelWkXXFXArcBVwJnAP8EBj+pl1vfT3Lybp4/gH4Y+ASsomyvlSn/qXA64DDgD/J1z1HNnjeVuDDFLqd8kR8LHDWGHEUPUQ2rPxpZAPzQdY1tRwYLLEf6wBOGtYJPg1sBI6PiCGA/JvwA2TJYbi//hJgPfCeQjfJANkf5pYljXyK0hfn4pC0GtgAfFfSWyPiR5LuzYvXF7t66q0fxRURMZwgvi3pncAp1EkaEfHTvCvo+ZH7z+em+CtJH4+Ip/PVHwZ+AXw1IZaia4ErJJ0HvIbs2szxJfdhHcDdUzYhlNm5+KpTbzfgUOCrwwkDICIeBP6d7FsxkiYBvcCNURi6OZ+b+cER+7xA0v2SXpB00oiy35H0PUkPSPqRpN6Ec9kl3+d9kp4Ffs1L37hf1oU2TitHLN9DNrR2IxYDryRLOkjalawr69qIeLbkvr4G/Cey1s+pZBfPb2swLmtjTho2UY4l++NafNXyGrJpZ2vNn/AosGf+fi/gFdSe/eyxEcu3ASdQe6a+RcDSiDgI+G/A9ZJqTXtb9LfAQuArwIlkswD+aV626xjbljVyvoXnGj1GPnvhvwLz8lXvJ/v3/EID+3qKbC6P08i6pq6PiBdG3cg6krunbKLcRdbPPpYnySbf2adG2T7AE/n7x8kSz9416vWQTXIDQET8AGBkLpD0OuBIsoRCRNya13kbsHaUGE8m+3b+6cK+poxSv51cTXYR/m1kXVPfjYj1De7rWrKW0E7krRfrPm5p2ISIiKciYm3xVafe02QJ5v15FxQAkg4AjgK+k9f7Ddkf9vcWWwb5H8MDE8PaH9gaEcVWz0OM3f3zSl7eUipzIbnVngMm1yqIiNuBe4HPAkeTtbQadSvZTHSLImLdOPZjbcwtDesEF5F9g/2GpKvJ7p66BNgOXFGo90ngW8BySYvJuqwWknVjNdpVMlbXFMDNwBn5RfcNZF1TRzV4vFZYD+wp6SNkifVXETFQKF8E/CNZa63hW2TzxO0WRpdzS8PaXkTcTHatYA/yb7Jk346Pyfvlh+vdSnYR9vfJbvf872R3Vz1KlmDG8jNgX0mvKKw7gELXVh3/hew238vI7jranfb643kNsAz4H8D/Bf7PiPKv5T+XRsRzVQZmncdzhFtXkzSN7Nv/ZRFx6YiyfuBzEXFTYd1twLKI+Kf8uY+rgYOii39RJP0l2cXvgyJiw4iypUAf8EYg8tbEeI4lsof+vgj8YURMG8/+rHpuaVjXkDQ5fxL7vZKOlXQWWT/7M2TftofrfSIfLO/twDWSNksavtA+DzhL0gPAZ4BTuzVhSDpY0vADgjeNTBgFB5Bds2nGLbQX5vs6vQn7sgngloZ1DUm7kHUPHQm8Fnia7HmJCyLinomMrR3lLa2jyAZL/ECxq69QZzrZtSGApyLi/nEe8/XA1Hzx+Yi4ezz7s+o5aZiZWTJ3T5mZWTInDTMzS+akYWZmyZw0zMwsmZOGmZklc9IwM7NkThpmZpbs/wPB6FpQggrIqQAAAABJRU5ErkJggg==\n",
|
1388 |
+
"text/plain": [
|
1389 |
+
"<Figure size 432x288 with 1 Axes>"
|
1390 |
+
]
|
1391 |
+
},
|
1392 |
+
"metadata": {
|
1393 |
+
"needs_background": "light"
|
1394 |
+
},
|
1395 |
+
"output_type": "display_data"
|
1396 |
+
}
|
1397 |
+
],
|
1398 |
+
"source": [
|
1399 |
+
"ax = df['neg_log10_affinity_M'].hist(bins=100,density=True)\n",
|
1400 |
+
"ax.set_xlabel('-$\\log_{10}$ affinity[M]',fontsize=16)\n",
|
1401 |
+
"ax.set_ylabel('probability',fontsize=16)\n",
|
1402 |
+
"ax.figure.savefig('affinity.pdf')"
|
1403 |
+
]
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"cell_type": "code",
|
1407 |
+
"execution_count": 6,
|
1408 |
+
"id": "11571486-901c-474b-a8ec-215ec5c9e661",
|
1409 |
+
"metadata": {},
|
1410 |
+
"outputs": [
|
1411 |
+
{
|
1412 |
+
"data": {
|
1413 |
+
"text/plain": [
|
1414 |
+
"1848949"
|
1415 |
+
]
|
1416 |
+
},
|
1417 |
+
"execution_count": 6,
|
1418 |
+
"metadata": {},
|
1419 |
+
"output_type": "execute_result"
|
1420 |
+
}
|
1421 |
+
],
|
1422 |
+
"source": [
|
1423 |
+
"len(df)"
|
1424 |
+
]
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"cell_type": "code",
|
1428 |
+
"execution_count": 7,
|
1429 |
+
"id": "9ca8df46-15d3-40f9-b304-dd6e5597be5e",
|
1430 |
+
"metadata": {},
|
1431 |
+
"outputs": [
|
1432 |
+
{
|
1433 |
+
"data": {
|
1434 |
+
"text/plain": [
|
1435 |
+
"5.142857142857143"
|
1436 |
+
]
|
1437 |
+
},
|
1438 |
+
"execution_count": 7,
|
1439 |
+
"metadata": {},
|
1440 |
+
"output_type": "execute_result"
|
1441 |
+
}
|
1442 |
+
],
|
1443 |
+
"source": [
|
1444 |
+
"1.8/0.35"
|
1445 |
+
]
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"cell_type": "code",
|
1449 |
+
"execution_count": null,
|
1450 |
+
"id": "88cf855d-704f-4ed4-827e-9f4e3288b3a0",
|
1451 |
+
"metadata": {},
|
1452 |
+
"outputs": [],
|
1453 |
+
"source": []
|
1454 |
+
}
|
1455 |
+
],
|
1456 |
+
"metadata": {
|
1457 |
+
"kernelspec": {
|
1458 |
+
"display_name": "Python 3",
|
1459 |
+
"language": "python",
|
1460 |
+
"name": "python3"
|
1461 |
+
},
|
1462 |
+
"language_info": {
|
1463 |
+
"codemirror_mode": {
|
1464 |
+
"name": "ipython",
|
1465 |
+
"version": 3
|
1466 |
+
},
|
1467 |
+
"file_extension": ".py",
|
1468 |
+
"mimetype": "text/x-python",
|
1469 |
+
"name": "python",
|
1470 |
+
"nbconvert_exporter": "python",
|
1471 |
+
"pygments_lexer": "ipython3",
|
1472 |
+
"version": "3.9.4"
|
1473 |
+
}
|
1474 |
+
},
|
1475 |
+
"nbformat": 4,
|
1476 |
+
"nbformat_minor": 5
|
1477 |
+
}
|
moad.ipynb
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"id": "c47a32d8-c857-41de-a70a-cec48046df12",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 92,
|
16 |
+
"id": "e0c6bd53-3417-44bd-b1b4-81802b37fbfc",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"df = pd.read_csv('binding_moad/every.csv',header=None,skiprows=2)\n",
|
21 |
+
"df = df.rename(columns={2:'pdb',3: 'ligand_name', 4: 'ligand_valid', 7: 'affinity_val', 8: 'affinity_unit', 9:'smiles'})\n",
|
22 |
+
"#df = df[df['ligand_valid']!='invalid'].copy()"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 93,
|
28 |
+
"id": "e40b1ddc-9a98-4a3b-b8a6-45e3940a3ea2",
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"df['is_sep'] = df[1] == 'Family. Representative Entry is '"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 94,
|
38 |
+
"id": "4f00a0d1-78db-4f32-9d12-5e035b70ef98",
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"df['cum_sum'] = df['is_sep'].cumsum()"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 95,
|
48 |
+
"id": "52c0c66c-1eb0-415b-b019-bc77419ccbd7",
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"from pint import UnitRegistry\n",
|
53 |
+
"ureg = UnitRegistry()\n",
|
54 |
+
"\n",
|
55 |
+
"def to_uM(affinity_unit):\n",
|
56 |
+
" try:\n",
|
57 |
+
" val = ureg(str(affinity_unit[0])+str(affinity_unit[1]))\n",
|
58 |
+
" return val.m_as(ureg.uM)\n",
|
59 |
+
" except Exception:\n",
|
60 |
+
" pass\n",
|
61 |
+
" \n",
|
62 |
+
" try:\n",
|
63 |
+
" val = ureg(str(affinity_unit[0])+str(affinity_unit[1]))\n",
|
64 |
+
" return 1/val.m_as(1/ureg.uM)\n",
|
65 |
+
" except Exception:\n",
|
66 |
+
" pass"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 96,
|
72 |
+
"id": "e5b4dd41-1389-408d-bee6-6dbeefc1d5c7",
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"groupby = df.groupby('cum_sum')"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 121,
|
82 |
+
"id": "61b8276c-54fe-4989-af5f-723994e1df7e",
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"def group(df):\n",
|
87 |
+
" pdb = df[df['is_sep']]['pdb'].values\n",
|
88 |
+
" if len(pdb) > 0:\n",
|
89 |
+
" pdb = pdb[0]\n",
|
90 |
+
" df['pdb_ref'] = pdb\n",
|
91 |
+
" return df[df['ligand_valid']=='valid']\n",
|
92 |
+
"df_expand = groupby.apply(group).reset_index(drop=True)"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": 124,
|
98 |
+
"id": "8bb2dfac-5f11-455c-9dee-3607b47b4232",
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"df_expand['affinity_uM'] = df_expand[['affinity_val','affinity_unit']].apply(to_uM,axis=1)"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 125,
|
108 |
+
"id": "0dc39f62-5b18-4a86-9a44-17d1925da2ad",
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"df_complex = pd.read_parquet('data/moad_complex.parquet')\n",
|
113 |
+
"df_complex['name'] = df_complex['name'].str.upper()"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": 128,
|
119 |
+
"id": "6d158a41-64c6-4fa2-92d5-562aa11e8924",
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [],
|
122 |
+
"source": [
|
123 |
+
"df_all = df_expand.merge(df_complex,left_on='pdb_ref',right_on='name')"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 129,
|
129 |
+
"id": "901fe6c6-dc8c-4ce4-82c6-1fb0b718287a",
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [],
|
132 |
+
"source": [
|
133 |
+
"df_all = df_all[~df_all['affinity_val'].isnull()]"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 130,
|
139 |
+
"id": "383f9a1c-ffc6-43da-ac5a-5bcb815be28b",
|
140 |
+
"metadata": {},
|
141 |
+
"outputs": [
|
142 |
+
{
|
143 |
+
"data": {
|
144 |
+
"text/html": [
|
145 |
+
"<div>\n",
|
146 |
+
"<style scoped>\n",
|
147 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
148 |
+
" vertical-align: middle;\n",
|
149 |
+
" }\n",
|
150 |
+
"\n",
|
151 |
+
" .dataframe tbody tr th {\n",
|
152 |
+
" vertical-align: top;\n",
|
153 |
+
" }\n",
|
154 |
+
"\n",
|
155 |
+
" .dataframe thead th {\n",
|
156 |
+
" text-align: right;\n",
|
157 |
+
" }\n",
|
158 |
+
"</style>\n",
|
159 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
160 |
+
" <thead>\n",
|
161 |
+
" <tr style=\"text-align: right;\">\n",
|
162 |
+
" <th></th>\n",
|
163 |
+
" <th>0</th>\n",
|
164 |
+
" <th>1</th>\n",
|
165 |
+
" <th>pdb</th>\n",
|
166 |
+
" <th>ligand_name</th>\n",
|
167 |
+
" <th>ligand_valid</th>\n",
|
168 |
+
" <th>5</th>\n",
|
169 |
+
" <th>6</th>\n",
|
170 |
+
" <th>affinity_val</th>\n",
|
171 |
+
" <th>affinity_unit</th>\n",
|
172 |
+
" <th>smiles</th>\n",
|
173 |
+
" <th>10</th>\n",
|
174 |
+
" <th>is_sep</th>\n",
|
175 |
+
" <th>cum_sum</th>\n",
|
176 |
+
" <th>pdb_ref</th>\n",
|
177 |
+
" <th>affinity_uM</th>\n",
|
178 |
+
" <th>name</th>\n",
|
179 |
+
" <th>seq</th>\n",
|
180 |
+
" </tr>\n",
|
181 |
+
" </thead>\n",
|
182 |
+
" <tbody>\n",
|
183 |
+
" <tr>\n",
|
184 |
+
" <th>0</th>\n",
|
185 |
+
" <td>NaN</td>\n",
|
186 |
+
" <td>NaN</td>\n",
|
187 |
+
" <td>NaN</td>\n",
|
188 |
+
" <td>2PA:C:613</td>\n",
|
189 |
+
" <td>valid</td>\n",
|
190 |
+
" <td>Ki</td>\n",
|
191 |
+
" <td>=</td>\n",
|
192 |
+
" <td>0.62</td>\n",
|
193 |
+
" <td>nM</td>\n",
|
194 |
+
" <td>NP(=O)(N)O</td>\n",
|
195 |
+
" <td>NaN</td>\n",
|
196 |
+
" <td>False</td>\n",
|
197 |
+
" <td>1</td>\n",
|
198 |
+
" <td>6H8J</td>\n",
|
199 |
+
" <td>0.000620</td>\n",
|
200 |
+
" <td>6H8J</td>\n",
|
201 |
+
" <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
|
202 |
+
" </tr>\n",
|
203 |
+
" <tr>\n",
|
204 |
+
" <th>2</th>\n",
|
205 |
+
" <td>NaN</td>\n",
|
206 |
+
" <td>NaN</td>\n",
|
207 |
+
" <td>NaN</td>\n",
|
208 |
+
" <td>HAE:C:800</td>\n",
|
209 |
+
" <td>valid</td>\n",
|
210 |
+
" <td>Ki</td>\n",
|
211 |
+
" <td>=</td>\n",
|
212 |
+
" <td>2.60</td>\n",
|
213 |
+
" <td>uM</td>\n",
|
214 |
+
" <td>CC(=O)NO</td>\n",
|
215 |
+
" <td>NaN</td>\n",
|
216 |
+
" <td>False</td>\n",
|
217 |
+
" <td>1</td>\n",
|
218 |
+
" <td>6H8J</td>\n",
|
219 |
+
" <td>2.600000</td>\n",
|
220 |
+
" <td>6H8J</td>\n",
|
221 |
+
" <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
|
222 |
+
" </tr>\n",
|
223 |
+
" <tr>\n",
|
224 |
+
" <th>7</th>\n",
|
225 |
+
" <td>NaN</td>\n",
|
226 |
+
" <td>NaN</td>\n",
|
227 |
+
" <td>NaN</td>\n",
|
228 |
+
" <td>43W:A:902</td>\n",
|
229 |
+
" <td>valid</td>\n",
|
230 |
+
" <td>ic50</td>\n",
|
231 |
+
" <td>=</td>\n",
|
232 |
+
" <td>580.00</td>\n",
|
233 |
+
" <td>nM</td>\n",
|
234 |
+
" <td>C#CCCOP(=O)(O)OP(=O)(O)O</td>\n",
|
235 |
+
" <td>NaN</td>\n",
|
236 |
+
" <td>False</td>\n",
|
237 |
+
" <td>2</td>\n",
|
238 |
+
" <td>4S3F</td>\n",
|
239 |
+
" <td>0.580000</td>\n",
|
240 |
+
" <td>4S3F</td>\n",
|
241 |
+
" <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
|
242 |
+
" </tr>\n",
|
243 |
+
" <tr>\n",
|
244 |
+
" <th>16</th>\n",
|
245 |
+
" <td>NaN</td>\n",
|
246 |
+
" <td>NaN</td>\n",
|
247 |
+
" <td>NaN</td>\n",
|
248 |
+
" <td>0CG:A:902</td>\n",
|
249 |
+
" <td>valid</td>\n",
|
250 |
+
" <td>ic50</td>\n",
|
251 |
+
" <td>=</td>\n",
|
252 |
+
" <td>770.00</td>\n",
|
253 |
+
" <td>nM</td>\n",
|
254 |
+
" <td>C#CCOP(=O)(O)OP(=O)(O)O</td>\n",
|
255 |
+
" <td>NaN</td>\n",
|
256 |
+
" <td>False</td>\n",
|
257 |
+
" <td>2</td>\n",
|
258 |
+
" <td>4S3F</td>\n",
|
259 |
+
" <td>0.770000</td>\n",
|
260 |
+
" <td>4S3F</td>\n",
|
261 |
+
" <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
|
262 |
+
" </tr>\n",
|
263 |
+
" <tr>\n",
|
264 |
+
" <th>17</th>\n",
|
265 |
+
" <td>NaN</td>\n",
|
266 |
+
" <td>NaN</td>\n",
|
267 |
+
" <td>NaN</td>\n",
|
268 |
+
" <td>ADN:A:901</td>\n",
|
269 |
+
" <td>valid</td>\n",
|
270 |
+
" <td>Kd</td>\n",
|
271 |
+
" <td>=</td>\n",
|
272 |
+
" <td>15.00</td>\n",
|
273 |
+
" <td>uM</td>\n",
|
274 |
+
" <td>c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3...</td>\n",
|
275 |
+
" <td>NaN</td>\n",
|
276 |
+
" <td>False</td>\n",
|
277 |
+
" <td>5</td>\n",
|
278 |
+
" <td>2GL0</td>\n",
|
279 |
+
" <td>15.000000</td>\n",
|
280 |
+
" <td>2GL0</td>\n",
|
281 |
+
" <td>MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV...</td>\n",
|
282 |
+
" </tr>\n",
|
283 |
+
" <tr>\n",
|
284 |
+
" <th>...</th>\n",
|
285 |
+
" <td>...</td>\n",
|
286 |
+
" <td>...</td>\n",
|
287 |
+
" <td>...</td>\n",
|
288 |
+
" <td>...</td>\n",
|
289 |
+
" <td>...</td>\n",
|
290 |
+
" <td>...</td>\n",
|
291 |
+
" <td>...</td>\n",
|
292 |
+
" <td>...</td>\n",
|
293 |
+
" <td>...</td>\n",
|
294 |
+
" <td>...</td>\n",
|
295 |
+
" <td>...</td>\n",
|
296 |
+
" <td>...</td>\n",
|
297 |
+
" <td>...</td>\n",
|
298 |
+
" <td>...</td>\n",
|
299 |
+
" <td>...</td>\n",
|
300 |
+
" <td>...</td>\n",
|
301 |
+
" <td>...</td>\n",
|
302 |
+
" </tr>\n",
|
303 |
+
" <tr>\n",
|
304 |
+
" <th>51900</th>\n",
|
305 |
+
" <td>NaN</td>\n",
|
306 |
+
" <td>NaN</td>\n",
|
307 |
+
" <td>NaN</td>\n",
|
308 |
+
" <td>MAN NAG:G:1</td>\n",
|
309 |
+
" <td>valid</td>\n",
|
310 |
+
" <td>Ka</td>\n",
|
311 |
+
" <td>=</td>\n",
|
312 |
+
" <td>7860.00</td>\n",
|
313 |
+
" <td>M^-1</td>\n",
|
314 |
+
" <td>NaN</td>\n",
|
315 |
+
" <td>NaN</td>\n",
|
316 |
+
" <td>False</td>\n",
|
317 |
+
" <td>10499</td>\n",
|
318 |
+
" <td>2WDB</td>\n",
|
319 |
+
" <td>127.226463</td>\n",
|
320 |
+
" <td>2WDB</td>\n",
|
321 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
322 |
+
" </tr>\n",
|
323 |
+
" <tr>\n",
|
324 |
+
" <th>51901</th>\n",
|
325 |
+
" <td>NaN</td>\n",
|
326 |
+
" <td>NaN</td>\n",
|
327 |
+
" <td>NaN</td>\n",
|
328 |
+
" <td>MAN NAG:F:1</td>\n",
|
329 |
+
" <td>valid</td>\n",
|
330 |
+
" <td>Ka</td>\n",
|
331 |
+
" <td>=</td>\n",
|
332 |
+
" <td>7860.00</td>\n",
|
333 |
+
" <td>M^-1</td>\n",
|
334 |
+
" <td>NaN</td>\n",
|
335 |
+
" <td>NaN</td>\n",
|
336 |
+
" <td>False</td>\n",
|
337 |
+
" <td>10499</td>\n",
|
338 |
+
" <td>2WDB</td>\n",
|
339 |
+
" <td>127.226463</td>\n",
|
340 |
+
" <td>2WDB</td>\n",
|
341 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
342 |
+
" </tr>\n",
|
343 |
+
" <tr>\n",
|
344 |
+
" <th>51902</th>\n",
|
345 |
+
" <td>NaN</td>\n",
|
346 |
+
" <td>NaN</td>\n",
|
347 |
+
" <td>NaN</td>\n",
|
348 |
+
" <td>NGA NAG:F:1</td>\n",
|
349 |
+
" <td>valid</td>\n",
|
350 |
+
" <td>Ka</td>\n",
|
351 |
+
" <td>=</td>\n",
|
352 |
+
" <td>5910.00</td>\n",
|
353 |
+
" <td>M^-1</td>\n",
|
354 |
+
" <td>NaN</td>\n",
|
355 |
+
" <td>NaN</td>\n",
|
356 |
+
" <td>False</td>\n",
|
357 |
+
" <td>10499</td>\n",
|
358 |
+
" <td>2WDB</td>\n",
|
359 |
+
" <td>169.204738</td>\n",
|
360 |
+
" <td>2WDB</td>\n",
|
361 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
362 |
+
" </tr>\n",
|
363 |
+
" <tr>\n",
|
364 |
+
" <th>51903</th>\n",
|
365 |
+
" <td>NaN</td>\n",
|
366 |
+
" <td>NaN</td>\n",
|
367 |
+
" <td>NaN</td>\n",
|
368 |
+
" <td>NGA NAG:E:1</td>\n",
|
369 |
+
" <td>valid</td>\n",
|
370 |
+
" <td>Ka</td>\n",
|
371 |
+
" <td>=</td>\n",
|
372 |
+
" <td>5910.00</td>\n",
|
373 |
+
" <td>M^-1</td>\n",
|
374 |
+
" <td>NaN</td>\n",
|
375 |
+
" <td>NaN</td>\n",
|
376 |
+
" <td>False</td>\n",
|
377 |
+
" <td>10499</td>\n",
|
378 |
+
" <td>2WDB</td>\n",
|
379 |
+
" <td>169.204738</td>\n",
|
380 |
+
" <td>2WDB</td>\n",
|
381 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
382 |
+
" </tr>\n",
|
383 |
+
" <tr>\n",
|
384 |
+
" <th>51904</th>\n",
|
385 |
+
" <td>NaN</td>\n",
|
386 |
+
" <td>NaN</td>\n",
|
387 |
+
" <td>NaN</td>\n",
|
388 |
+
" <td>NGA NAG:H:1</td>\n",
|
389 |
+
" <td>valid</td>\n",
|
390 |
+
" <td>Ka</td>\n",
|
391 |
+
" <td>=</td>\n",
|
392 |
+
" <td>5910.00</td>\n",
|
393 |
+
" <td>M^-1</td>\n",
|
394 |
+
" <td>NaN</td>\n",
|
395 |
+
" <td>NaN</td>\n",
|
396 |
+
" <td>False</td>\n",
|
397 |
+
" <td>10499</td>\n",
|
398 |
+
" <td>2WDB</td>\n",
|
399 |
+
" <td>169.204738</td>\n",
|
400 |
+
" <td>2WDB</td>\n",
|
401 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
402 |
+
" </tr>\n",
|
403 |
+
" </tbody>\n",
|
404 |
+
"</table>\n",
|
405 |
+
"<p>25425 rows × 17 columns</p>\n",
|
406 |
+
"</div>"
|
407 |
+
],
|
408 |
+
"text/plain": [
|
409 |
+
" 0 1 pdb ligand_name ligand_valid 5 6 affinity_val \\\n",
|
410 |
+
"0 NaN NaN NaN 2PA:C:613 valid Ki = 0.62 \n",
|
411 |
+
"2 NaN NaN NaN HAE:C:800 valid Ki = 2.60 \n",
|
412 |
+
"7 NaN NaN NaN 43W:A:902 valid ic50 = 580.00 \n",
|
413 |
+
"16 NaN NaN NaN 0CG:A:902 valid ic50 = 770.00 \n",
|
414 |
+
"17 NaN NaN NaN ADN:A:901 valid Kd = 15.00 \n",
|
415 |
+
"... ... ... ... ... ... ... .. ... \n",
|
416 |
+
"51900 NaN NaN NaN MAN NAG:G:1 valid Ka = 7860.00 \n",
|
417 |
+
"51901 NaN NaN NaN MAN NAG:F:1 valid Ka = 7860.00 \n",
|
418 |
+
"51902 NaN NaN NaN NGA NAG:F:1 valid Ka = 5910.00 \n",
|
419 |
+
"51903 NaN NaN NaN NGA NAG:E:1 valid Ka = 5910.00 \n",
|
420 |
+
"51904 NaN NaN NaN NGA NAG:H:1 valid Ka = 5910.00 \n",
|
421 |
+
"\n",
|
422 |
+
" affinity_unit smiles 10 \\\n",
|
423 |
+
"0 nM NP(=O)(N)O NaN \n",
|
424 |
+
"2 uM CC(=O)NO NaN \n",
|
425 |
+
"7 nM C#CCCOP(=O)(O)OP(=O)(O)O NaN \n",
|
426 |
+
"16 nM C#CCOP(=O)(O)OP(=O)(O)O NaN \n",
|
427 |
+
"17 uM c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... NaN \n",
|
428 |
+
"... ... ... .. \n",
|
429 |
+
"51900 M^-1 NaN NaN \n",
|
430 |
+
"51901 M^-1 NaN NaN \n",
|
431 |
+
"51902 M^-1 NaN NaN \n",
|
432 |
+
"51903 M^-1 NaN NaN \n",
|
433 |
+
"51904 M^-1 NaN NaN \n",
|
434 |
+
"\n",
|
435 |
+
" is_sep cum_sum pdb_ref affinity_uM name \\\n",
|
436 |
+
"0 False 1 6H8J 0.000620 6H8J \n",
|
437 |
+
"2 False 1 6H8J 2.600000 6H8J \n",
|
438 |
+
"7 False 2 4S3F 0.580000 4S3F \n",
|
439 |
+
"16 False 2 4S3F 0.770000 4S3F \n",
|
440 |
+
"17 False 5 2GL0 15.000000 2GL0 \n",
|
441 |
+
"... ... ... ... ... ... \n",
|
442 |
+
"51900 False 10499 2WDB 127.226463 2WDB \n",
|
443 |
+
"51901 False 10499 2WDB 127.226463 2WDB \n",
|
444 |
+
"51902 False 10499 2WDB 169.204738 2WDB \n",
|
445 |
+
"51903 False 10499 2WDB 169.204738 2WDB \n",
|
446 |
+
"51904 False 10499 2WDB 169.204738 2WDB \n",
|
447 |
+
"\n",
|
448 |
+
" seq \n",
|
449 |
+
"0 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
|
450 |
+
"2 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
|
451 |
+
"7 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
|
452 |
+
"16 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
|
453 |
+
"17 MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV... \n",
|
454 |
+
"... ... \n",
|
455 |
+
"51900 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
456 |
+
"51901 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
457 |
+
"51902 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
458 |
+
"51903 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
459 |
+
"51904 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
460 |
+
"\n",
|
461 |
+
"[25425 rows x 17 columns]"
|
462 |
+
]
|
463 |
+
},
|
464 |
+
"execution_count": 130,
|
465 |
+
"metadata": {},
|
466 |
+
"output_type": "execute_result"
|
467 |
+
}
|
468 |
+
],
|
469 |
+
"source": [
|
470 |
+
"df_all"
|
471 |
+
]
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"cell_type": "code",
|
475 |
+
"execution_count": 133,
|
476 |
+
"id": "bebc962b-10f7-478c-8e23-e2d3722e875c",
|
477 |
+
"metadata": {},
|
478 |
+
"outputs": [],
|
479 |
+
"source": [
|
480 |
+
"df_all[['pdb','ligand_name','smiles','name','affinity_uM','seq']].to_parquet('data/moad.parquet')"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"cell_type": "code",
|
485 |
+
"execution_count": null,
|
486 |
+
"id": "6ceb8706-273c-4a83-8cda-c7e33fc87e38",
|
487 |
+
"metadata": {},
|
488 |
+
"outputs": [],
|
489 |
+
"source": []
|
490 |
+
}
|
491 |
+
],
|
492 |
+
"metadata": {
|
493 |
+
"kernelspec": {
|
494 |
+
"display_name": "Python 3",
|
495 |
+
"language": "python",
|
496 |
+
"name": "python3"
|
497 |
+
},
|
498 |
+
"language_info": {
|
499 |
+
"codemirror_mode": {
|
500 |
+
"name": "ipython",
|
501 |
+
"version": 3
|
502 |
+
},
|
503 |
+
"file_extension": ".py",
|
504 |
+
"mimetype": "text/x-python",
|
505 |
+
"name": "python",
|
506 |
+
"nbconvert_exporter": "python",
|
507 |
+
"pygments_lexer": "ipython3",
|
508 |
+
"version": "3.9.4"
|
509 |
+
}
|
510 |
+
},
|
511 |
+
"nbformat": 4,
|
512 |
+
"nbformat_minor": 5
|
513 |
+
}
|
moad.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mpi4py import MPI
|
2 |
+
from mpi4py.futures import MPICommExecutor
|
3 |
+
|
4 |
+
from openbabel import pybel
|
5 |
+
from Bio import SeqIO
|
6 |
+
|
7 |
+
import os
|
8 |
+
def parse_complex(fn):
|
9 |
+
try:
|
10 |
+
name = os.path.basename(fn).split('.')[0]
|
11 |
+
print(name)
|
12 |
+
seq = str(next(SeqIO.parse(fn, "pdb-seqres")).seq)
|
13 |
+
return name, seq
|
14 |
+
except:
|
15 |
+
return None
|
16 |
+
|
17 |
+
|
18 |
+
if __name__ == '__main__':
|
19 |
+
import glob
|
20 |
+
|
21 |
+
filenames = glob.glob('binding_moad/BindingMOAD_2020/*.bio1')
|
22 |
+
comm = MPI.COMM_WORLD
|
23 |
+
with MPICommExecutor(comm, root=0) as executor:
|
24 |
+
if executor is not None:
|
25 |
+
result = executor.map(parse_complex, filenames)
|
26 |
+
result = list(result)
|
27 |
+
names = [r[0] for r in result if r is not None]
|
28 |
+
seqs = [r[1] for r in result if r is not None]
|
29 |
+
|
30 |
+
import pandas as pd
|
31 |
+
df = pd.DataFrame({'name': names, 'seq': seqs})
|
32 |
+
df.to_parquet('data/moad_complex.parquet')
|
pdbbind.ipynb
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "834aeced-c3c5-42a0-bad1-41e009dd86ee",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"### Preprocessing"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 16,
|
14 |
+
"id": "86476f6e-802a-463b-a1b0-2ae228bb92af",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import pandas as pd"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": null,
|
24 |
+
"id": "0cde27df-2f77-4e62-8c65-7b7a4e76b404",
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"complex = pd.read_parquet('')"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 49,
|
34 |
+
"id": "9b2be11c-f4bb-4107-af49-abd78052afcf",
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [],
|
37 |
+
"source": [
|
38 |
+
"df = pd.read_table('pdbbind/data/plain-text-index/index/INDEX_general_PL_data.2019',skiprows=4,sep=r'\\s+',usecols=[0,4]).drop(0)\n",
|
39 |
+
"df = df.rename(columns={'#': 'name','release': 'affinity'})"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": 50,
|
45 |
+
"id": "16e0fe44-96aa-4d3a-ae42-3609e895418b",
|
46 |
+
"metadata": {},
|
47 |
+
"outputs": [],
|
48 |
+
"source": [
|
49 |
+
"from numericalunits import mL, nm"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": 136,
|
55 |
+
"id": "3acbca3c-9c0b-43a1-a45e-331bf153bcfa",
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"from pint import UnitRegistry\n",
|
60 |
+
"ureg = UnitRegistry()\n",
|
61 |
+
"\n",
|
62 |
+
"def to_uM(affinity):\n",
|
63 |
+
" val = ureg(affinity)\n",
|
64 |
+
" try:\n",
|
65 |
+
" return val.m_as(ureg.uM)\n",
|
66 |
+
" except Exception:\n",
|
67 |
+
" pass\n",
|
68 |
+
" \n",
|
69 |
+
" try:\n",
|
70 |
+
" return 1/val.m_as(1/ureg.uM)\n",
|
71 |
+
" except Exception:\n",
|
72 |
+
" pass"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 137,
|
78 |
+
"id": "58e5748b-2cea-43ff-ab51-85a5021bd50b",
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [],
|
81 |
+
"source": [
|
82 |
+
"df['affinity_uM'] = df['affinity'].str.split('[=\\~><]').str[1].apply(to_uM)"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": 138,
|
88 |
+
"id": "d92f0004-68c1-4487-94b9-56b4fd598de4",
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [
|
91 |
+
{
|
92 |
+
"data": {
|
93 |
+
"text/html": [
|
94 |
+
"<div>\n",
|
95 |
+
"<style scoped>\n",
|
96 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
97 |
+
" vertical-align: middle;\n",
|
98 |
+
" }\n",
|
99 |
+
"\n",
|
100 |
+
" .dataframe tbody tr th {\n",
|
101 |
+
" vertical-align: top;\n",
|
102 |
+
" }\n",
|
103 |
+
"\n",
|
104 |
+
" .dataframe thead th {\n",
|
105 |
+
" text-align: right;\n",
|
106 |
+
" }\n",
|
107 |
+
"</style>\n",
|
108 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
109 |
+
" <thead>\n",
|
110 |
+
" <tr style=\"text-align: right;\">\n",
|
111 |
+
" <th></th>\n",
|
112 |
+
" <th>name</th>\n",
|
113 |
+
" <th>affinity</th>\n",
|
114 |
+
" <th>affinity_uM</th>\n",
|
115 |
+
" </tr>\n",
|
116 |
+
" </thead>\n",
|
117 |
+
" <tbody>\n",
|
118 |
+
" <tr>\n",
|
119 |
+
" <th>1</th>\n",
|
120 |
+
" <td>3zzf</td>\n",
|
121 |
+
" <td>Ki=400mM</td>\n",
|
122 |
+
" <td>4.000000e+05</td>\n",
|
123 |
+
" </tr>\n",
|
124 |
+
" <tr>\n",
|
125 |
+
" <th>2</th>\n",
|
126 |
+
" <td>3gww</td>\n",
|
127 |
+
" <td>IC50=355mM</td>\n",
|
128 |
+
" <td>3.550000e+05</td>\n",
|
129 |
+
" </tr>\n",
|
130 |
+
" <tr>\n",
|
131 |
+
" <th>3</th>\n",
|
132 |
+
" <td>1w8l</td>\n",
|
133 |
+
" <td>Ki=320mM</td>\n",
|
134 |
+
" <td>3.200000e+05</td>\n",
|
135 |
+
" </tr>\n",
|
136 |
+
" <tr>\n",
|
137 |
+
" <th>4</th>\n",
|
138 |
+
" <td>3fqa</td>\n",
|
139 |
+
" <td>IC50=320mM</td>\n",
|
140 |
+
" <td>3.200000e+05</td>\n",
|
141 |
+
" </tr>\n",
|
142 |
+
" <tr>\n",
|
143 |
+
" <th>5</th>\n",
|
144 |
+
" <td>1zsb</td>\n",
|
145 |
+
" <td>Kd=250mM</td>\n",
|
146 |
+
" <td>2.500000e+05</td>\n",
|
147 |
+
" </tr>\n",
|
148 |
+
" <tr>\n",
|
149 |
+
" <th>...</th>\n",
|
150 |
+
" <td>...</td>\n",
|
151 |
+
" <td>...</td>\n",
|
152 |
+
" <td>...</td>\n",
|
153 |
+
" </tr>\n",
|
154 |
+
" <tr>\n",
|
155 |
+
" <th>17675</th>\n",
|
156 |
+
" <td>7cpa</td>\n",
|
157 |
+
" <td>Ki=11fM</td>\n",
|
158 |
+
" <td>1.100000e-08</td>\n",
|
159 |
+
" </tr>\n",
|
160 |
+
" <tr>\n",
|
161 |
+
" <th>17676</th>\n",
|
162 |
+
" <td>2xuf</td>\n",
|
163 |
+
" <td>Kd=4.1fM</td>\n",
|
164 |
+
" <td>4.100000e-09</td>\n",
|
165 |
+
" </tr>\n",
|
166 |
+
" <tr>\n",
|
167 |
+
" <th>17677</th>\n",
|
168 |
+
" <td>1avd</td>\n",
|
169 |
+
" <td>Kd=1fM</td>\n",
|
170 |
+
" <td>1.000000e-09</td>\n",
|
171 |
+
" </tr>\n",
|
172 |
+
" <tr>\n",
|
173 |
+
" <th>17678</th>\n",
|
174 |
+
" <td>2xui</td>\n",
|
175 |
+
" <td>Kd=1.0fM</td>\n",
|
176 |
+
" <td>1.000000e-09</td>\n",
|
177 |
+
" </tr>\n",
|
178 |
+
" <tr>\n",
|
179 |
+
" <th>17679</th>\n",
|
180 |
+
" <td>2avi</td>\n",
|
181 |
+
" <td>Kd=0.6fM</td>\n",
|
182 |
+
" <td>6.000000e-10</td>\n",
|
183 |
+
" </tr>\n",
|
184 |
+
" </tbody>\n",
|
185 |
+
"</table>\n",
|
186 |
+
"<p>17679 rows × 3 columns</p>\n",
|
187 |
+
"</div>"
|
188 |
+
],
|
189 |
+
"text/plain": [
|
190 |
+
" name affinity affinity_uM\n",
|
191 |
+
"1 3zzf Ki=400mM 4.000000e+05\n",
|
192 |
+
"2 3gww IC50=355mM 3.550000e+05\n",
|
193 |
+
"3 1w8l Ki=320mM 3.200000e+05\n",
|
194 |
+
"4 3fqa IC50=320mM 3.200000e+05\n",
|
195 |
+
"5 1zsb Kd=250mM 2.500000e+05\n",
|
196 |
+
"... ... ... ...\n",
|
197 |
+
"17675 7cpa Ki=11fM 1.100000e-08\n",
|
198 |
+
"17676 2xuf Kd=4.1fM 4.100000e-09\n",
|
199 |
+
"17677 1avd Kd=1fM 1.000000e-09\n",
|
200 |
+
"17678 2xui Kd=1.0fM 1.000000e-09\n",
|
201 |
+
"17679 2avi Kd=0.6fM 6.000000e-10\n",
|
202 |
+
"\n",
|
203 |
+
"[17679 rows x 3 columns]"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
"execution_count": 138,
|
207 |
+
"metadata": {},
|
208 |
+
"output_type": "execute_result"
|
209 |
+
}
|
210 |
+
],
|
211 |
+
"source": [
|
212 |
+
"df"
|
213 |
+
]
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"cell_type": "code",
|
217 |
+
"execution_count": 139,
|
218 |
+
"id": "d6dda488-f709-4fe7-b372-080042cf7c66",
|
219 |
+
"metadata": {},
|
220 |
+
"outputs": [],
|
221 |
+
"source": [
|
222 |
+
"df_complex = pd.read_parquet('data/pdbbind_complex.parquet')"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"execution_count": 140,
|
228 |
+
"id": "df7929e3-c7fd-4e1b-a165-92f8d53b9011",
|
229 |
+
"metadata": {},
|
230 |
+
"outputs": [],
|
231 |
+
"source": [
|
232 |
+
"df_all = df_complex.merge(df,on='name').drop('affinity',axis=1)"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": 141,
|
238 |
+
"id": "4d105c42-0d11-49db-9012-52fafc9cd299",
|
239 |
+
"metadata": {},
|
240 |
+
"outputs": [],
|
241 |
+
"source": [
|
242 |
+
"df_all.to_parquet('data/pdbbind.parquet')"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"cell_type": "code",
|
247 |
+
"execution_count": 142,
|
248 |
+
"id": "2955b056-26dd-45fa-8d74-f17661253a9a",
|
249 |
+
"metadata": {},
|
250 |
+
"outputs": [
|
251 |
+
{
|
252 |
+
"data": {
|
253 |
+
"text/plain": [
|
254 |
+
"17652"
|
255 |
+
]
|
256 |
+
},
|
257 |
+
"execution_count": 142,
|
258 |
+
"metadata": {},
|
259 |
+
"output_type": "execute_result"
|
260 |
+
}
|
261 |
+
],
|
262 |
+
"source": [
|
263 |
+
"len(df_all)"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"execution_count": null,
|
269 |
+
"id": "ed3fe035-6035-4d39-b072-d12dc0a95857",
|
270 |
+
"metadata": {},
|
271 |
+
"outputs": [],
|
272 |
+
"source": []
|
273 |
+
}
|
274 |
+
],
|
275 |
+
"metadata": {
|
276 |
+
"kernelspec": {
|
277 |
+
"display_name": "Python 3",
|
278 |
+
"language": "python",
|
279 |
+
"name": "python3"
|
280 |
+
},
|
281 |
+
"language_info": {
|
282 |
+
"codemirror_mode": {
|
283 |
+
"name": "ipython",
|
284 |
+
"version": 3
|
285 |
+
},
|
286 |
+
"file_extension": ".py",
|
287 |
+
"mimetype": "text/x-python",
|
288 |
+
"name": "python",
|
289 |
+
"nbconvert_exporter": "python",
|
290 |
+
"pygments_lexer": "ipython3",
|
291 |
+
"version": "3.9.4"
|
292 |
+
}
|
293 |
+
},
|
294 |
+
"nbformat": 4,
|
295 |
+
"nbformat_minor": 5
|
296 |
+
}
|
pdbbind.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mpi4py import MPI
|
2 |
+
from mpi4py.futures import MPICommExecutor
|
3 |
+
|
4 |
+
from openbabel import pybel
|
5 |
+
from Bio import SeqIO
|
6 |
+
|
7 |
+
import os
|
8 |
+
def parse_complex(fn):
|
9 |
+
try:
|
10 |
+
name = os.path.basename(fn)
|
11 |
+
seq = str(next(SeqIO.parse(fn+'/'+name+'_protein.pdb', "pdb-seqres")).seq)
|
12 |
+
mol = next(pybel.readfile('sdf',fn+'/'+name+'_ligand.sdf'))
|
13 |
+
smi = mol.write('can').split('\t')[0]
|
14 |
+
return name, seq, smi
|
15 |
+
except:
|
16 |
+
return None
|
17 |
+
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
import glob
|
21 |
+
|
22 |
+
filenames = glob.glob('pdbbind/data/v2019-other-PL/*')
|
23 |
+
filenames.extend(glob.glob('pdbbind/data/refined-set/*'))
|
24 |
+
comm = MPI.COMM_WORLD
|
25 |
+
with MPICommExecutor(comm, root=0) as executor:
|
26 |
+
if executor is not None:
|
27 |
+
result = executor.map(parse_complex, filenames)
|
28 |
+
result = list(result)
|
29 |
+
names = [r[0] for r in result if r is not None]
|
30 |
+
seqs = [r[1] for r in result if r is not None]
|
31 |
+
all_smiles = [r[2] for r in result if r is not None]
|
32 |
+
|
33 |
+
import pandas as pd
|
34 |
+
df = pd.DataFrame({'name': names, 'seq': seqs, 'smiles': all_smiles})
|
35 |
+
df.to_parquet('data/pdbbind_complex.parquet')
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
mpi4py
|
2 |
+
rdkit
|
3 |
+
openbabel
|