File size: 18,924 Bytes
f8e890c 50d238f f8e890c 50d238f f8e890c 50d238f f8e890c 50d238f f8e890c 50d238f f8e890c 50d238f f8e890c 50d238f f8e890c 50d238f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
from typing import Optional, Literal, Union
from io import BytesIO
import numpy as np
import nibabel as nib
import torch
import torchvision
import monai
import monai.transforms
from indexed_gzip import IndexedGzipFile
from monai.data.image_reader import NibabelReader
from monai.transforms.io.array import switch_endianness
from monai.transforms.transform import MapTransform, Transform
from monai.data import MetaTensor
from monai.data.utils import correct_nifti_header_if_necessary
from monai.config import KeysCollection, DtypeLike
from monai.utils import (
ImageMetaKey,
convert_to_dst_type,
ensure_tuple_rep,
ensure_tuple,
)
from monai.utils.enums import PostFix
from huggingface_hub import HfFileSystem
class LoadNIfTIFromLocalCache(Transform):
def __init__(
self,
dtype: DtypeLike | None = np.float32,
ensure_channel_first: bool = False,
simple_keys: bool = False,
prune_meta_pattern: str | None = None,
prune_meta_sep: str = ".",
):
self.dtype = dtype
self.ensure_channel_first = ensure_channel_first
self.simple_keys = simple_keys
self.pattern = prune_meta_pattern
self.sep = prune_meta_sep
self.reader = NibabelReader()
def __call__(self, path: str):
with open(path, mode="rb") as f:
img = nib.Nifti1Image.from_stream(
IndexedGzipFile(fileobj=BytesIO(f.read()))
)
img = correct_nifti_header_if_necessary(img)
img_array, meta_data = self.reader.get_data(img)
img_array = convert_to_dst_type(img_array, dst=img_array, dtype=self.dtype)[0]
if not isinstance(meta_data, dict):
raise ValueError(f"`meta_data` must be a dict, got type {type(meta_data)}.")
# make sure all elements in metadata are little endian
meta_data = switch_endianness(meta_data, "<")
meta_data[ImageMetaKey.FILENAME_OR_OBJ] = path
img = MetaTensor.ensure_torch_and_prune_meta(
img_array,
meta_data,
simple_keys=self.simple_keys,
pattern=self.pattern,
sep=self.sep,
)
if self.ensure_channel_first:
img = monai.transforms.EnsureChannelFirst()(img)
return img
class LoadNIfTIFromLocalCached(MapTransform):
def __init__(
self,
keys: KeysCollection,
allow_missing_keys: bool = False,
dtype: DtypeLike | None = np.float32,
meta_keys: KeysCollection | None = None,
meta_key_postfix: str = PostFix.meta(),
overwriting: bool = False,
ensure_channel_first: bool = False,
simple_keys: bool = False,
prune_meta_pattern: str | None = None,
prune_meta_sep: str = ".",
):
super().__init__(keys, allow_missing_keys)
self._loader = LoadNIfTIFromLocalCache(
dtype=dtype,
ensure_channel_first=ensure_channel_first,
simple_keys=simple_keys,
prune_meta_pattern=prune_meta_pattern,
prune_meta_sep=prune_meta_sep,
)
if not isinstance(meta_key_postfix, str):
raise TypeError(
f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}."
)
self.meta_keys = (
ensure_tuple_rep(None, len(self.keys))
if meta_keys is None
else ensure_tuple(meta_keys)
)
if len(self.keys) != len(self.meta_keys):
raise ValueError(
f"meta_keys should have the same length as keys, got {len(self.keys)} and {len(self.meta_keys)}."
)
self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys))
self.overwriting = overwriting
def __call__(self, data):
d = dict(data)
for key, meta_key, meta_key_postfix in self.key_iterator(
d, self.meta_keys, self.meta_key_postfix
):
data = self._loader(d[key])
d[key] = data
return d
class LoadNIfTIFromHFHub(Transform):
def __init__(
self,
dtype: DtypeLike | None = np.float32,
ensure_channel_first: bool = False,
simple_keys: bool = False,
prune_meta_pattern: str | None = None,
prune_meta_sep: str = ".",
):
self.dtype = dtype
self.ensure_channel_first = ensure_channel_first
self.simple_keys = simple_keys
self.pattern = prune_meta_pattern
self.sep = prune_meta_sep
self.fs = HfFileSystem()
self.reader = NibabelReader()
def __call__(self, url: str):
url = LoadNIfTIFromHFHub._convert_to_hffs_path(url)
with self.fs.open(url, mode="rb") as f:
img = nib.Nifti1Image.from_stream(
IndexedGzipFile(fileobj=BytesIO(f.read()))
)
img = correct_nifti_header_if_necessary(img)
img_array, meta_data = self.reader.get_data(img)
img_array = convert_to_dst_type(img_array, dst=img_array, dtype=self.dtype)[0]
if not isinstance(meta_data, dict):
raise ValueError(f"`meta_data` must be a dict, got type {type(meta_data)}.")
# make sure all elements in metadata are little endian
meta_data = switch_endianness(meta_data, "<")
meta_data[ImageMetaKey.FILENAME_OR_OBJ] = url
img = MetaTensor.ensure_torch_and_prune_meta(
img_array,
meta_data,
simple_keys=self.simple_keys,
pattern=self.pattern,
sep=self.sep,
)
if self.ensure_channel_first:
img = monai.transforms.EnsureChannelFirst()(img)
return img
@staticmethod
def _convert_to_hffs_path(url: str):
if url.startswith("https://huggingface.co/datasets/"):
parts = url.split("/")
return f"hf://{'/'.join(parts[3:6])}/{'/'.join(parts[8:])}"
return url
class LoadNIfTIFromHFHubd(MapTransform):
def __init__(
self,
keys: KeysCollection,
allow_missing_keys: bool = False,
dtype: DtypeLike | None = np.float32,
meta_keys: KeysCollection | None = None,
meta_key_postfix: str = PostFix.meta(),
overwriting: bool = False,
ensure_channel_first: bool = False,
simple_keys: bool = False,
prune_meta_pattern: str | None = None,
prune_meta_sep: str = ".",
):
super().__init__(keys, allow_missing_keys)
self._loader = LoadNIfTIFromHFHub(
dtype=dtype,
ensure_channel_first=ensure_channel_first,
simple_keys=simple_keys,
prune_meta_pattern=prune_meta_pattern,
prune_meta_sep=prune_meta_sep,
)
if not isinstance(meta_key_postfix, str):
raise TypeError(
f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}."
)
self.meta_keys = (
ensure_tuple_rep(None, len(self.keys))
if meta_keys is None
else ensure_tuple(meta_keys)
)
if len(self.keys) != len(self.meta_keys):
raise ValueError(
f"meta_keys should have the same length as keys, got {len(self.keys)} and {len(self.meta_keys)}."
)
self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys))
self.overwriting = overwriting
def __call__(self, data):
d = dict(data)
for key, meta_key, meta_key_postfix in self.key_iterator(
d, self.meta_keys, self.meta_key_postfix
):
data = self._loader(d[key])
d[key] = data
return d
class UnifyUnusualDICOM(Transform):
"""
Correct DICOM pixel_array if PixelRepresentation == 1 and BitsAllocated != BitsStored
Steps:
1. Convert data back to the original signed int16.
2. Compute the number of bits to shift over (BitsShift = BitsAllocated - BitsStored)
3. Left shift by BitsShift then right shift by BitsShift
4. Convert data back to the default dtype for metatensor (float32)
By default all dicom files in this dataset `rsna-2023-abdominal-trauma-detection` is in
- uint16 if Pixel Representation = 0
- int16 if Pixel Representation = 1
Refer: https://dicom.innolitics.com/ciods/rt-dose/image-pixel/00280103
Warning:
- Use this transform on the test set as we expect to take DICOM series as input instead of NIfTI.
- The passed in metatensor must have the following DICOM metadata:
- Pixel Representation
- Bits Allocated
- Bits Stored
- To have a metatensor that has those metadata:
- Set reader to be PydicomReader with prune_metadata=False, i.e., monai.transforms.LoadImaged(..., reader=PydicomReader(prune_metadata=False))
"""
def __init__(self):
self.DCM_ATTR2TAG = {
"Bits Allocated": "00280100", # http://dicomlookup.com/lookup.asp?sw=Tnumber&q=(0028,0100)
"Bits Stored": "00280101", # http://dicomlookup.com/lookup.asp?sw=Tnumber&q=(0028,0101)
"Pixel Representation": "00280103", # http://dicomlookup.com/lookup.asp?sw=Tnumber&q=(0028,0103)
}
def __call__(self, data):
if not all([dcm_tag in data.meta for dcm_tag in self.DCM_ATTR2TAG.values()]):
raise Exception(
f"Attribute tags of {self.DCM_ATTR2TAG} must exist in the dicom metadata to use this transform `{self.__class__.__name__}. Hint: Set reader to be PydicomReader with prune_metadata=False, i.e., monai.transforms.LoadImaged(..., reader=PydicomReader(prune_metadata=False))`"
)
pixel_representation = data.meta[self.DCM_ATTR2TAG["Pixel Representation"]][
"Value"
][0]
bits_allocated = data.meta[self.DCM_ATTR2TAG["Bits Allocated"]]["Value"][0]
bits_stored = data.meta[self.DCM_ATTR2TAG["Bits Stored"]]["Value"][0]
data = UnifyUnusualDICOM._standardize_dicom_pixels(
data, pixel_representation, bits_allocated, bits_stored
)
return data
@staticmethod
def _standardize_dicom_pixels(
data: torch.Tensor,
pixel_representation: int,
bits_allocated: int,
bits_stored: int,
):
bits_shift = bits_allocated - bits_stored
if pixel_representation == 1 and bits_shift != 0:
dtype_before = data.dtype
dtype_shift = torch.int16
data = data.to(dtype_shift)
data = (data << bits_shift).to(dtype_shift) >> bits_shift
data = data.to(dtype_before)
return data
class UnifyUnusualDICOMd(MapTransform):
def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False):
super().__init__(keys, allow_missing_keys)
self._unify_unusual_dicom = UnifyUnusualDICOM()
def __call__(self, data):
d = dict(data)
for key in self.key_iterator(d):
data = self._unify_unusual_dicom(d[key])
d[key] = data
return d
class UnifyUnusualNIfTI(Transform):
"""
Correct NIfTI pixel values if PixelRepresentation == 1 and BitsAllocated != BitsStored.
Steps:
1. Convert data back to the original signed int16.
2. Compute the number of bits to shift over (BitsShift = BitsAllocated - BitsStored)
3. Left shift by BitsShift then right shift by BitsShift
4. Convert data back to the default dtype for metatensor (float32)
By default all dicom files in this dataset `rsna-2023-abdominal-trauma-detection` is in
- uint16 if Pixel Representation = 0
- int16 if Pixel Representation = 1
Refer: https://dicom.innolitics.com/ciods/rt-dose/image-pixel/00280103
Warning:
- This transform only works for DICOM series that has been converted to NIfTI format and
has a precomputed csv file that tracks the series that has unusual DICOM pixel representation format (`potential_unusual_dicom_series_meta.csv`).
- This transform is not applicable for data that we have not preprocess yet (e.g. test set)
- Use a different custom transform for test set (e.g. `UnifyUnusualDICOM`) as we expect to take DICOM series as input instead of NIfTI
Why do we this?
- NIfTI file doesn't store the Pixel Representation, Bits Allocated, and Bits Stored metadata.
- The reason behind using a NIfTI file is to allow for easier data loading during training phase.
"""
def __init__(
self,
x_key: str = "img",
metadata_key: str = "metadata",
meta_pixel_representation_key: str = "pixel_representation",
meta_bits_allocated_key: str = "bits_allocated",
meta_bits_stored_key: str = "bits_stored",
):
self.x_key = x_key
self.metadata_key = metadata_key
self.pixel_representation_key = meta_pixel_representation_key
self.bits_allocated_key = meta_bits_allocated_key
self.bits_stored_key = meta_bits_stored_key
def __call__(self, data):
if not self.metadata_key in data or not self.x_key in data:
raise KeyError(
f"Key `{self.metadata_key}` of transform `{self.__class__.__name__}` was missing in the data."
)
if (
not self.pixel_representation_key in data[self.metadata_key]
or not self.bits_allocated_key in data[self.metadata_key]
or not self.bits_stored_key in data[self.metadata_key]
):
raise KeyError(
f"Key `{self.pixel_representation_key}` or `{self.bits_allocated_key}` or `{self.bits_stored_key}` of transform `{self.__class__.__name__}` was missing in the metadata."
)
data[self.x_key] = UnifyUnusualNIfTI._standardize_dicom_pixels(
data[self.x_key],
data[self.metadata_key][self.pixel_representation_key],
data[self.metadata_key][self.bits_allocated_key],
data[self.metadata_key][self.bits_stored_key],
)
return data
@staticmethod
def _standardize_dicom_pixels(
data: torch.Tensor,
pixel_representation: int,
bits_allocated: int,
bits_stored: int,
):
bits_shift = bits_allocated - bits_stored
if pixel_representation == 1 and bits_shift != 0:
dtype_before = data.dtype
dtype_shift = torch.int16
data = data.to(dtype_shift)
data = (data << bits_shift).to(dtype_shift) >> bits_shift
data = data.to(dtype_before)
return data
def volume_transforms(
crop_strategy: Optional[
Literal["oversample", "center", "random", "none"]
] = "oversample",
voxel_spacing: tuple[float, float, float] = (3.0, 3.0, 3.0),
volume_size: tuple[int, int, int] = (96, 96, 96),
axcodes: str = "RAS",
streaming: bool = False,
):
transform_steps = [
LoadNIfTIFromHFHubd(keys=["img", "seg"], allow_missing_keys=True)
if streaming
else LoadNIfTIFromLocalCached(keys=["img", "seg"], allow_missing_keys=True),
monai.transforms.EnsureTyped(
keys=["img", "seg"],
data_type="tensor",
dtype=torch.float32,
allow_missing_keys=True,
),
UnifyUnusualNIfTI(
x_key="img",
metadata_key="metadata",
meta_pixel_representation_key="pixel_representation",
meta_bits_allocated_key="bits_allocated",
meta_bits_stored_key="bits_stored",
),
monai.transforms.EnsureChannelFirstd(
keys=["img", "seg"], allow_missing_keys=True
),
monai.transforms.Orientationd(
keys=["img", "seg"], axcodes=axcodes, allow_missing_keys=True
),
monai.transforms.Spacingd(
keys=["img", "seg"],
pixdim=voxel_spacing,
mode=["bilinear", "nearest"],
allow_missing_keys=True,
),
monai.transforms.NormalizeIntensityd(keys=["img"], nonzero=False),
monai.transforms.ScaleIntensityd(keys=["img"], minv=-1.0, maxv=1.0),
monai.transforms.SpatialPadd(
keys=["img", "seg"], spatial_size=volume_size, allow_missing_keys=True
),
]
if crop_strategy == "oversample":
transform_steps.append(
monai.transforms.RandSpatialCropSamplesd(
keys=["img", "seg"],
roi_size=volume_size,
num_samples=3,
random_center=True,
random_size=False,
allow_missing_keys=True,
)
)
elif crop_strategy == "random":
transform_steps.append(
monai.transforms.RandSpatialCropd(
keys=["img", "seg"],
roi_size=volume_size,
random_center=True,
random_size=False,
allow_missing_keys=True,
)
)
elif crop_strategy == "center":
transform_steps.append(
monai.transforms.CenterSpatialCropd(
keys=["img", "seg"], roi_size=volume_size, allow_missing_keys=True
)
)
elif crop_strategy == "none" or crop_strategy is None:
pass
else:
raise ValueError(
f"crop_strategy must be one of ['oversample', 'center', 'random', 'none'], got {crop_strategy}."
)
return monai.transforms.Compose(transform_steps)
def slice_transforms(
crop_strategy: Literal["ten", "five", "center", "random"] = "ten",
shorter_edge_length: int = 256,
slice_size: tuple[int, int] = (224, 224),
) -> torchvision.transforms.Compose:
if crop_strategy == "ten":
return torchvision.transforms.Compose(
[
torchvision.transforms.Resize(size=shorter_edge_length, antialias=True),
torchvision.transforms.TenCrop(size=slice_size),
]
)
elif crop_strategy == "five":
return torchvision.transforms.Compose(
[
torchvision.transforms.Resize(size=shorter_edge_length, antialias=True),
torchvision.transforms.FiveCrop(size=slice_size),
]
)
elif crop_strategy == "center":
return torchvision.transforms.Compose(
[
torchvision.transforms.Resize(size=shorter_edge_length, antialias=True),
torchvision.transforms.CenterCrop(size=slice_size),
]
)
elif crop_strategy == "random":
return torchvision.transforms.Compose(
[
torchvision.transforms.Resize(size=shorter_edge_length, antialias=True),
torchvision.transforms.RandomCrop(size=slice_size),
]
)
else:
raise ValueError(
f"crop_strategy must be one of ['ten', 'five', 'center', 'random'], got {crop_strategy}."
)
|