jherng commited on
Commit
2b361de
·
1 Parent(s): 17de5ed

Update rsna-2023-abdominal-trauma-detection.py

Browse files
rsna-2023-abdominal-trauma-detection.py CHANGED
@@ -224,7 +224,9 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
224
  seg_files,
225
  ):
226
  series_meta_df = pd.read_csv(series_meta_file)
227
- dicom_tags_df = datasets.load_dataset("parquet", data_files=dicom_tags_file)["train"].to_pandas()[
 
 
228
  [
229
  "SeriesInstanceUID",
230
  "PixelRepresentation",
@@ -248,7 +250,9 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
248
  series_meta_df = pd.merge(
249
  left=series_meta_df, right=dicom_tags_df, how="inner", on="series_id"
250
  )
251
- labels_df = pd.read_csv(labels_file) if self.config.name != "segmentation" else None
 
 
252
 
253
  if self.config.name == "segmentation":
254
  for key, (series_id, img_path, seg_path) in enumerate(
@@ -288,25 +292,31 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
288
  .iloc[0]
289
  .to_dict()
290
  )
 
291
  yield key, {
292
  "img_path": img_path,
293
  "seg_path": seg_path,
294
- "bowel": datasets.ClassLabel(
295
- num_classes=2, names=["healthy", "injury"]
296
- ),
297
- "extravasation": datasets.ClassLabel(
298
- num_classes=2, names=["healthy", "injury"]
299
- ),
300
- "kidney": datasets.ClassLabel(
301
- num_classes=3, names=["healthy", "low", "high"]
302
- ),
303
- "liver": datasets.ClassLabel(
304
- num_classes=3, names=["healthy", "low", "high"]
305
- ),
306
- "spleen": datasets.ClassLabel(
307
- num_classes=3, names=["healthy", "low", "high"]
308
- ),
309
- "any_injury": datasets.Value("bool"),
 
 
 
 
 
310
  "metadata": {
311
  "series_id": series_id,
312
  "patient_id": series_meta["patient_id"],
 
224
  seg_files,
225
  ):
226
  series_meta_df = pd.read_csv(series_meta_file)
227
+ dicom_tags_df = datasets.load_dataset("parquet", data_files=dicom_tags_file)[
228
+ "train"
229
+ ].to_pandas()[
230
  [
231
  "SeriesInstanceUID",
232
  "PixelRepresentation",
 
250
  series_meta_df = pd.merge(
251
  left=series_meta_df, right=dicom_tags_df, how="inner", on="series_id"
252
  )
253
+ labels_df = (
254
+ pd.read_csv(labels_file) if self.config.name != "segmentation" else None
255
+ )
256
 
257
  if self.config.name == "segmentation":
258
  for key, (series_id, img_path, seg_path) in enumerate(
 
292
  .iloc[0]
293
  .to_dict()
294
  )
295
+
296
  yield key, {
297
  "img_path": img_path,
298
  "seg_path": seg_path,
299
+ "bowel": [label_data["bowel_healthy"], label_data["bowel_injury"]],
300
+ "extravasation": [
301
+ label_data["extravasation_healthy"],
302
+ label_data["extravasation_injury"],
303
+ ],
304
+ "kidney": [
305
+ label_data["kidney_healthy"],
306
+ label_data["kidney_low"],
307
+ label_data["kidney_high"],
308
+ ],
309
+ "liver": [
310
+ label_data["liver_healthy"],
311
+ label_data["liver_low"],
312
+ label_data["liver_high"],
313
+ ],
314
+ "spleen": [
315
+ label_data["spleen_healthy"],
316
+ label_data["spleen_low"],
317
+ label_data["spleen_high"],
318
+ ],
319
+ "any_injury": label_data["any_injury"],
320
  "metadata": {
321
  "series_id": series_id,
322
  "patient_id": series_meta["patient_id"],