jherng commited on
Commit
6031cf5
·
1 Parent(s): 74d07cc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +233 -231
README.md CHANGED
@@ -1,173 +1,173 @@
1
  ---
2
  license: mit
3
  dataset_info:
4
- - config_name: classification
5
- features:
6
- - name: img_path
7
- dtype: string
8
- - name: bowel
9
- dtype:
10
- class_label:
11
- names:
12
- '0': healthy
13
- '1': injury
14
- - name: extravasation
15
- dtype:
16
- class_label:
17
- names:
18
- '0': healthy
19
- '1': injury
20
- - name: kidney
21
- dtype:
22
- class_label:
23
- names:
24
- '0': healthy
25
- '1': low
26
- '2': high
27
- - name: liver
28
- dtype:
29
- class_label:
30
- names:
31
- '0': healthy
32
- '1': low
33
- '2': high
34
- - name: spleen
35
- dtype:
36
- class_label:
37
- names:
38
- '0': healthy
39
- '1': low
40
- '2': high
41
- - name: any_injury
42
- dtype: bool
43
- - name: metadata
44
- struct:
45
- - name: series_id
46
- dtype: int32
47
- - name: patient_id
48
- dtype: int32
49
- - name: incomplete_organ
50
- dtype: bool
51
- - name: aortic_hu
52
- dtype: float32
53
- - name: pixel_representation
54
- dtype: int32
55
- - name: bits_allocated
56
- dtype: int32
57
- - name: bits_stored
58
- dtype: int32
59
- splits:
60
- - name: train
61
- num_bytes: 802231
62
- num_examples: 4239
63
- - name: test
64
- num_bytes: 89326
65
- num_examples: 472
66
- download_size: 96729254048
67
- dataset_size: 891557
68
- - config_name: classification-with-mask
69
- features:
70
- - name: img_path
71
- dtype: string
72
- - name: seg_path
73
- dtype: string
74
- - name: bowel
75
- dtype:
76
- class_label:
77
- names:
78
- '0': healthy
79
- '1': injury
80
- - name: extravasation
81
- dtype:
82
- class_label:
83
- names:
84
- '0': healthy
85
- '1': injury
86
- - name: kidney
87
- dtype:
88
- class_label:
89
- names:
90
- '0': healthy
91
- '1': low
92
- '2': high
93
- - name: liver
94
- dtype:
95
- class_label:
96
- names:
97
- '0': healthy
98
- '1': low
99
- '2': high
100
- - name: spleen
101
- dtype:
102
- class_label:
103
- names:
104
- '0': healthy
105
- '1': low
106
- '2': high
107
- - name: any_injury
108
- dtype: bool
109
- - name: metadata
110
- struct:
111
- - name: series_id
112
- dtype: int32
113
- - name: patient_id
114
- dtype: int32
115
- - name: incomplete_organ
116
- dtype: bool
117
- - name: aortic_hu
118
- dtype: float32
119
- - name: pixel_representation
120
- dtype: int32
121
- - name: bits_allocated
122
- dtype: int32
123
- - name: bits_stored
124
- dtype: int32
125
- splits:
126
- - name: train
127
- num_bytes: 58138
128
- num_examples: 185
129
- - name: test
130
- num_bytes: 6600
131
- num_examples: 21
132
- download_size: 4196738529
133
- dataset_size: 64738
134
- - config_name: segmentation
135
- features:
136
- - name: img_path
137
- dtype: string
138
- - name: seg_path
139
- dtype: string
140
- - name: metadata
141
- struct:
142
- - name: series_id
143
- dtype: int32
144
- - name: patient_id
145
- dtype: int32
146
- - name: incomplete_organ
147
- dtype: bool
148
- - name: aortic_hu
149
- dtype: float32
150
- - name: pixel_representation
151
- dtype: int32
152
- - name: bits_allocated
153
- dtype: int32
154
- - name: bits_stored
155
- dtype: int32
156
- splits:
157
- - name: train
158
- num_bytes: 50714
159
- num_examples: 185
160
- - name: test
161
- num_bytes: 5757
162
- num_examples: 21
163
- download_size: 4196631843
164
- dataset_size: 56471
165
  task_categories:
166
- - image-classification
167
- - image-segmentation
168
  pretty_name: RSNA 2023 Abdominal Trauma Detection (Preprocessed)
169
  size_categories:
170
- - 1K<n<10K
171
  ---
172
 
173
  # Dataset Card for RSNA 2023 Abdominal Trauma Detection (Preprocessed)
@@ -176,19 +176,19 @@ size_categories:
176
 
177
  - **Homepage:** [https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection](https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection)
178
  - **Source:** [https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data)
179
-
180
 
181
  ### Dataset Summary
182
 
183
- This dataset is the preprocessed version of the dataset from [RSNA 2023 Abdominal Trauma Detection Kaggle Competition](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data).
184
 
185
  It is tailored for segmentation and classification tasks. It contains 3 different configs as described below:
 
186
  - **classification**:
187
- - 4711 instances where each instance includes a CT scan in NIfTI format, target labels (e.g., extravasation, bowel, kidney, liver, spleen, any_injury), and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored)
188
  - **segmentation**:
189
- - 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored)
190
  - **classification-with-mask**:
191
- - 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, target labels (e.g., extravasation, bowel, kidney, liver, spleen, any_injury), and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored)
192
 
193
  All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size.
194
 
@@ -198,81 +198,78 @@ All CT scans and segmentation masks had already been resampled with voxel spacin
198
 
199
  #### Configuration 1: classification
200
 
201
- - **Size of downloaded dataset files:** {Size in MB}
202
- - **Size of the generated dataset:** {Size in MB}
203
- - **Total amount of disk used:** {Total Size in MB}
204
 
205
  An example of an instance in the 'classification' configuration looks as follows:
 
206
  ```json
207
  {
208
- "img_path": "path/to/CT_scan.nii",
209
- "bowel": "healthy",
210
- "extravasation": "injury",
211
- "kidney": "low",
212
- "liver": "high",
213
- "spleen": "low",
214
- "any_injury": true,
215
- "metadata": {
216
- "series_id": 12345,
217
- "patient_id": 67890,
218
- "incomplete_organ": false,
219
- "aortic_hu": 135.8,
220
- "pixel_representation": 8,
221
- "bits_allocated": 16,
222
- "bits_stored": 12
223
- }
224
  }
225
  ```
226
 
227
  #### Configuration 2: segmentation
228
 
229
- - **Size of downloaded dataset files:** {Size in MB}
230
- - **Size of the generated dataset:** {Size in MB}
231
- - **Total amount of disk used:** {Total Size in MB}
232
 
233
  An example of an instance in the 'segmentation' configuration looks as follows:
 
234
  ```json
235
  {
236
- "img_path": "path/to/CT_scan.nii",
237
- "seg_path": "path/to/segmentation_mask.nii",
238
- "metadata": {
239
- "series_id": 12345,
240
- "patient_id": 67890,
241
- "incomplete_organ": true,
242
- "aortic_hu": 120.5,
243
- "pixel_representation": 8,
244
- "bits_allocated": 16,
245
- "bits_stored": 12
246
- }
247
  }
248
  ```
249
 
250
  #### Configuration 3: classification-with-mask
251
 
252
- - **Size of downloaded dataset files:** {Size in MB}
253
- - **Size of the generated dataset:** {Size in MB}
254
- - **Total amount of disk used:** {Total Size in MB}
255
 
256
  An example of an instance in the 'classification-with-mask' configuration looks as follows:
 
257
  ```json
258
  {
259
- "img_path": "path/to/CT_scan.nii",
260
- "seg_path": "path/to/segmentation_mask.nii",
261
- "bowel": "healthy",
262
- "extravasation": "injury",
263
- "kidney": "low",
264
- "liver": "high",
265
- "spleen": "low",
266
- "any_injury": true,
267
- "metadata": {
268
- "series_id": 12345,
269
- "patient_id": 67890,
270
- "incomplete_organ": true,
271
- "aortic_hu": 120.5,
272
- "pixel_representation": 8,
273
- "bits_allocated": 16,
274
- "bits_stored": 12
275
- }
276
  }
277
  ```
278
 
@@ -295,16 +292,18 @@ The data fields for all configurations are as follows:
295
 
296
  ### Data Splits
297
 
298
- Default split:
 
299
  - 0.9:0.1 with random_state = 42
300
 
301
- | Configuration Name | Train (n_samples) | Test (n_samples) |
302
- |--------------------|------:|-----:|
303
- | classification | 4239 | 472 |
304
- | segmentation | 185 | 21 |
305
- | classification-with-mask | 185 | 21 |
306
 
307
  Modify the split proportion:
 
308
  ```python
309
  rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", test_size=0.05, random_state=42)
310
  ```
@@ -312,15 +311,18 @@ rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classific
312
  ### Citation Information
313
 
314
  - Preprocessed dataset:
315
- ```
 
316
  @InProceedings{huggingface:dataset,
317
  title = {RSNA 2023 Abdominal Trauma Detection Dataset (Preprocessed)},
318
  author={Hong Jia Herng},
319
  year={2023}
320
  }
321
  ```
 
322
  - Original dataset:
323
- ```
 
324
  @misc{rsna-2023-abdominal-trauma-detection,
325
  author = {Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, John Mongan},
326
  title = {RSNA 2023 Abdominal Trauma Detection},
@@ -328,4 +330,4 @@ year={2023}
328
  year = {2023},
329
  url = {https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection}
330
  }
331
- ```
 
1
  ---
2
  license: mit
3
  dataset_info:
4
+ - config_name: classification
5
+ features:
6
+ - name: img_path
7
+ dtype: string
8
+ - name: bowel
9
+ dtype:
10
+ class_label:
11
+ names:
12
+ "0": healthy
13
+ "1": injury
14
+ - name: extravasation
15
+ dtype:
16
+ class_label:
17
+ names:
18
+ "0": healthy
19
+ "1": injury
20
+ - name: kidney
21
+ dtype:
22
+ class_label:
23
+ names:
24
+ "0": healthy
25
+ "1": low
26
+ "2": high
27
+ - name: liver
28
+ dtype:
29
+ class_label:
30
+ names:
31
+ "0": healthy
32
+ "1": low
33
+ "2": high
34
+ - name: spleen
35
+ dtype:
36
+ class_label:
37
+ names:
38
+ "0": healthy
39
+ "1": low
40
+ "2": high
41
+ - name: any_injury
42
+ dtype: bool
43
+ - name: metadata
44
+ struct:
45
+ - name: series_id
46
+ dtype: int32
47
+ - name: patient_id
48
+ dtype: int32
49
+ - name: incomplete_organ
50
+ dtype: bool
51
+ - name: aortic_hu
52
+ dtype: float32
53
+ - name: pixel_representation
54
+ dtype: int32
55
+ - name: bits_allocated
56
+ dtype: int32
57
+ - name: bits_stored
58
+ dtype: int32
59
+ splits:
60
+ - name: train
61
+ num_bytes: 802231
62
+ num_examples: 4239
63
+ - name: test
64
+ num_bytes: 89326
65
+ num_examples: 472
66
+ download_size: 96729254048
67
+ dataset_size: 891557
68
+ - config_name: classification-with-mask
69
+ features:
70
+ - name: img_path
71
+ dtype: string
72
+ - name: seg_path
73
+ dtype: string
74
+ - name: bowel
75
+ dtype:
76
+ class_label:
77
+ names:
78
+ "0": healthy
79
+ "1": injury
80
+ - name: extravasation
81
+ dtype:
82
+ class_label:
83
+ names:
84
+ "0": healthy
85
+ "1": injury
86
+ - name: kidney
87
+ dtype:
88
+ class_label:
89
+ names:
90
+ "0": healthy
91
+ "1": low
92
+ "2": high
93
+ - name: liver
94
+ dtype:
95
+ class_label:
96
+ names:
97
+ "0": healthy
98
+ "1": low
99
+ "2": high
100
+ - name: spleen
101
+ dtype:
102
+ class_label:
103
+ names:
104
+ "0": healthy
105
+ "1": low
106
+ "2": high
107
+ - name: any_injury
108
+ dtype: bool
109
+ - name: metadata
110
+ struct:
111
+ - name: series_id
112
+ dtype: int32
113
+ - name: patient_id
114
+ dtype: int32
115
+ - name: incomplete_organ
116
+ dtype: bool
117
+ - name: aortic_hu
118
+ dtype: float32
119
+ - name: pixel_representation
120
+ dtype: int32
121
+ - name: bits_allocated
122
+ dtype: int32
123
+ - name: bits_stored
124
+ dtype: int32
125
+ splits:
126
+ - name: train
127
+ num_bytes: 58138
128
+ num_examples: 185
129
+ - name: test
130
+ num_bytes: 6600
131
+ num_examples: 21
132
+ download_size: 4196738529
133
+ dataset_size: 64738
134
+ - config_name: segmentation
135
+ features:
136
+ - name: img_path
137
+ dtype: string
138
+ - name: seg_path
139
+ dtype: string
140
+ - name: metadata
141
+ struct:
142
+ - name: series_id
143
+ dtype: int32
144
+ - name: patient_id
145
+ dtype: int32
146
+ - name: incomplete_organ
147
+ dtype: bool
148
+ - name: aortic_hu
149
+ dtype: float32
150
+ - name: pixel_representation
151
+ dtype: int32
152
+ - name: bits_allocated
153
+ dtype: int32
154
+ - name: bits_stored
155
+ dtype: int32
156
+ splits:
157
+ - name: train
158
+ num_bytes: 50714
159
+ num_examples: 185
160
+ - name: test
161
+ num_bytes: 5757
162
+ num_examples: 21
163
+ download_size: 4196631843
164
+ dataset_size: 56471
165
  task_categories:
166
+ - image-classification
167
+ - image-segmentation
168
  pretty_name: RSNA 2023 Abdominal Trauma Detection (Preprocessed)
169
  size_categories:
170
+ - 1K<n<10K
171
  ---
172
 
173
  # Dataset Card for RSNA 2023 Abdominal Trauma Detection (Preprocessed)
 
176
 
177
  - **Homepage:** [https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection](https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection)
178
  - **Source:** [https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data)
 
179
 
180
  ### Dataset Summary
181
 
182
+ This dataset is the preprocessed version of the dataset from [RSNA 2023 Abdominal Trauma Detection Kaggle Competition](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data).
183
 
184
  It is tailored for segmentation and classification tasks. It contains 3 different configs as described below:
185
+
186
  - **classification**:
187
+ - 4711 instances where each instance includes a CT scan in NIfTI format, target labels, and its relevant metadata.
188
  - **segmentation**:
189
+ - 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, and its relevant metadata.
190
  - **classification-with-mask**:
191
+ - 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, target labels, and its relevant metadata.
192
 
193
  All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size.
194
 
 
198
 
199
  #### Configuration 1: classification
200
 
201
+ - **Size of downloaded dataset files:** 90.09 GiB
 
 
202
 
203
  An example of an instance in the 'classification' configuration looks as follows:
204
+
205
  ```json
206
  {
207
+ "img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/25899/21872.nii.gz",
208
+ "bowel": 0,
209
+ "extravasation": 0,
210
+ "kidney": 0,
211
+ "liver": 0,
212
+ "spleen": 0,
213
+ "any_injury": false,
214
+ "metadata": {
215
+ "series_id": 21872,
216
+ "patient_id": 25899,
217
+ "incomplete_organ": false,
218
+ "aortic_hu": 113.0,
219
+ "pixel_representation": 0,
220
+ "bits_allocated": 16,
221
+ "bits_stored": 12
222
+ }
223
  }
224
  ```
225
 
226
  #### Configuration 2: segmentation
227
 
228
+ - **Size of downloaded dataset files:** 3.91 GiB
 
 
229
 
230
  An example of an instance in the 'segmentation' configuration looks as follows:
231
+
232
  ```json
233
  {
234
+ "img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/4791/4622.nii.gz",
235
+ "seg_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/segmentations/4622.nii.gz",
236
+ "metadata": {
237
+ "series_id": 4622,
238
+ "patient_id": 4791,
239
+ "incomplete_organ": false,
240
+ "aortic_hu": 223.0,
241
+ "pixel_representation": 1,
242
+ "bits_allocated": 16,
243
+ "bits_stored": 16
244
+ }
245
  }
246
  ```
247
 
248
  #### Configuration 3: classification-with-mask
249
 
250
+ - **Size of downloaded dataset files:** 3.91 GiB
 
 
251
 
252
  An example of an instance in the 'classification-with-mask' configuration looks as follows:
253
+
254
  ```json
255
  {
256
+ "img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/4791/4622.nii.gz",
257
+ "seg_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/segmentations/4622.nii.gz",
258
+ "bowel": 0,
259
+ "extravasation": 0,
260
+ "kidney": 0,
261
+ "liver": 1,
262
+ "spleen": 1,
263
+ "any_injury": true,
264
+ "metadata": {
265
+ "series_id": 4622,
266
+ "patient_id": 4791,
267
+ "incomplete_organ": false,
268
+ "aortic_hu": 223.0,
269
+ "pixel_representation": 1,
270
+ "bits_allocated": 16,
271
+ "bits_stored": 16
272
+ }
273
  }
274
  ```
275
 
 
292
 
293
  ### Data Splits
294
 
295
+ Default split:
296
+
297
  - 0.9:0.1 with random_state = 42
298
 
299
+ | Configuration Name | Train (n_samples) | Test (n_samples) |
300
+ | ------------------------ | ----------------: | ---------------: |
301
+ | classification | 4239 | 472 |
302
+ | segmentation | 185 | 21 |
303
+ | classification-with-mask | 185 | 21 |
304
 
305
  Modify the split proportion:
306
+
307
  ```python
308
  rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", test_size=0.05, random_state=42)
309
  ```
 
311
  ### Citation Information
312
 
313
  - Preprocessed dataset:
314
+
315
+ ```
316
  @InProceedings{huggingface:dataset,
317
  title = {RSNA 2023 Abdominal Trauma Detection Dataset (Preprocessed)},
318
  author={Hong Jia Herng},
319
  year={2023}
320
  }
321
  ```
322
+
323
  - Original dataset:
324
+
325
+ ```
326
  @misc{rsna-2023-abdominal-trauma-detection,
327
  author = {Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, John Mongan},
328
  title = {RSNA 2023 Abdominal Trauma Detection},
 
330
  year = {2023},
331
  url = {https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection}
332
  }
333
+ ```