Update README.md
Browse files
README.md
CHANGED
@@ -1,173 +1,173 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
dataset_info:
|
4 |
-
- config_name: classification
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
- config_name: classification-with-mask
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
- config_name: segmentation
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
task_categories:
|
166 |
-
- image-classification
|
167 |
-
- image-segmentation
|
168 |
pretty_name: RSNA 2023 Abdominal Trauma Detection (Preprocessed)
|
169 |
size_categories:
|
170 |
-
- 1K<n<10K
|
171 |
---
|
172 |
|
173 |
# Dataset Card for RSNA 2023 Abdominal Trauma Detection (Preprocessed)
|
@@ -176,19 +176,19 @@ size_categories:
|
|
176 |
|
177 |
- **Homepage:** [https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection](https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection)
|
178 |
- **Source:** [https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data)
|
179 |
-
|
180 |
|
181 |
### Dataset Summary
|
182 |
|
183 |
-
This dataset is the preprocessed version of the dataset from [RSNA 2023 Abdominal Trauma Detection Kaggle Competition](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data).
|
184 |
|
185 |
It is tailored for segmentation and classification tasks. It contains 3 different configs as described below:
|
|
|
186 |
- **classification**:
|
187 |
-
- 4711 instances where each instance includes a CT scan in NIfTI format, target labels
|
188 |
- **segmentation**:
|
189 |
-
- 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, and its relevant metadata
|
190 |
- **classification-with-mask**:
|
191 |
-
- 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, target labels
|
192 |
|
193 |
All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size.
|
194 |
|
@@ -198,81 +198,78 @@ All CT scans and segmentation masks had already been resampled with voxel spacin
|
|
198 |
|
199 |
#### Configuration 1: classification
|
200 |
|
201 |
-
- **Size of downloaded dataset files:**
|
202 |
-
- **Size of the generated dataset:** {Size in MB}
|
203 |
-
- **Total amount of disk used:** {Total Size in MB}
|
204 |
|
205 |
An example of an instance in the 'classification' configuration looks as follows:
|
|
|
206 |
```json
|
207 |
{
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
}
|
225 |
```
|
226 |
|
227 |
#### Configuration 2: segmentation
|
228 |
|
229 |
-
- **Size of downloaded dataset files:**
|
230 |
-
- **Size of the generated dataset:** {Size in MB}
|
231 |
-
- **Total amount of disk used:** {Total Size in MB}
|
232 |
|
233 |
An example of an instance in the 'segmentation' configuration looks as follows:
|
|
|
234 |
```json
|
235 |
{
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
}
|
248 |
```
|
249 |
|
250 |
#### Configuration 3: classification-with-mask
|
251 |
|
252 |
-
- **Size of downloaded dataset files:**
|
253 |
-
- **Size of the generated dataset:** {Size in MB}
|
254 |
-
- **Total amount of disk used:** {Total Size in MB}
|
255 |
|
256 |
An example of an instance in the 'classification-with-mask' configuration looks as follows:
|
|
|
257 |
```json
|
258 |
{
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
}
|
277 |
```
|
278 |
|
@@ -295,16 +292,18 @@ The data fields for all configurations are as follows:
|
|
295 |
|
296 |
### Data Splits
|
297 |
|
298 |
-
Default split:
|
|
|
299 |
- 0.9:0.1 with random_state = 42
|
300 |
|
301 |
-
| Configuration Name
|
302 |
-
|
303 |
-
| classification
|
304 |
-
| segmentation
|
305 |
-
| classification-with-mask |
|
306 |
|
307 |
Modify the split proportion:
|
|
|
308 |
```python
|
309 |
rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", test_size=0.05, random_state=42)
|
310 |
```
|
@@ -312,15 +311,18 @@ rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classific
|
|
312 |
### Citation Information
|
313 |
|
314 |
- Preprocessed dataset:
|
315 |
-
|
|
|
316 |
@InProceedings{huggingface:dataset,
|
317 |
title = {RSNA 2023 Abdominal Trauma Detection Dataset (Preprocessed)},
|
318 |
author={Hong Jia Herng},
|
319 |
year={2023}
|
320 |
}
|
321 |
```
|
|
|
322 |
- Original dataset:
|
323 |
-
|
|
|
324 |
@misc{rsna-2023-abdominal-trauma-detection,
|
325 |
author = {Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, John Mongan},
|
326 |
title = {RSNA 2023 Abdominal Trauma Detection},
|
@@ -328,4 +330,4 @@ year={2023}
|
|
328 |
year = {2023},
|
329 |
url = {https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection}
|
330 |
}
|
331 |
-
```
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
dataset_info:
|
4 |
+
- config_name: classification
|
5 |
+
features:
|
6 |
+
- name: img_path
|
7 |
+
dtype: string
|
8 |
+
- name: bowel
|
9 |
+
dtype:
|
10 |
+
class_label:
|
11 |
+
names:
|
12 |
+
"0": healthy
|
13 |
+
"1": injury
|
14 |
+
- name: extravasation
|
15 |
+
dtype:
|
16 |
+
class_label:
|
17 |
+
names:
|
18 |
+
"0": healthy
|
19 |
+
"1": injury
|
20 |
+
- name: kidney
|
21 |
+
dtype:
|
22 |
+
class_label:
|
23 |
+
names:
|
24 |
+
"0": healthy
|
25 |
+
"1": low
|
26 |
+
"2": high
|
27 |
+
- name: liver
|
28 |
+
dtype:
|
29 |
+
class_label:
|
30 |
+
names:
|
31 |
+
"0": healthy
|
32 |
+
"1": low
|
33 |
+
"2": high
|
34 |
+
- name: spleen
|
35 |
+
dtype:
|
36 |
+
class_label:
|
37 |
+
names:
|
38 |
+
"0": healthy
|
39 |
+
"1": low
|
40 |
+
"2": high
|
41 |
+
- name: any_injury
|
42 |
+
dtype: bool
|
43 |
+
- name: metadata
|
44 |
+
struct:
|
45 |
+
- name: series_id
|
46 |
+
dtype: int32
|
47 |
+
- name: patient_id
|
48 |
+
dtype: int32
|
49 |
+
- name: incomplete_organ
|
50 |
+
dtype: bool
|
51 |
+
- name: aortic_hu
|
52 |
+
dtype: float32
|
53 |
+
- name: pixel_representation
|
54 |
+
dtype: int32
|
55 |
+
- name: bits_allocated
|
56 |
+
dtype: int32
|
57 |
+
- name: bits_stored
|
58 |
+
dtype: int32
|
59 |
+
splits:
|
60 |
+
- name: train
|
61 |
+
num_bytes: 802231
|
62 |
+
num_examples: 4239
|
63 |
+
- name: test
|
64 |
+
num_bytes: 89326
|
65 |
+
num_examples: 472
|
66 |
+
download_size: 96729254048
|
67 |
+
dataset_size: 891557
|
68 |
+
- config_name: classification-with-mask
|
69 |
+
features:
|
70 |
+
- name: img_path
|
71 |
+
dtype: string
|
72 |
+
- name: seg_path
|
73 |
+
dtype: string
|
74 |
+
- name: bowel
|
75 |
+
dtype:
|
76 |
+
class_label:
|
77 |
+
names:
|
78 |
+
"0": healthy
|
79 |
+
"1": injury
|
80 |
+
- name: extravasation
|
81 |
+
dtype:
|
82 |
+
class_label:
|
83 |
+
names:
|
84 |
+
"0": healthy
|
85 |
+
"1": injury
|
86 |
+
- name: kidney
|
87 |
+
dtype:
|
88 |
+
class_label:
|
89 |
+
names:
|
90 |
+
"0": healthy
|
91 |
+
"1": low
|
92 |
+
"2": high
|
93 |
+
- name: liver
|
94 |
+
dtype:
|
95 |
+
class_label:
|
96 |
+
names:
|
97 |
+
"0": healthy
|
98 |
+
"1": low
|
99 |
+
"2": high
|
100 |
+
- name: spleen
|
101 |
+
dtype:
|
102 |
+
class_label:
|
103 |
+
names:
|
104 |
+
"0": healthy
|
105 |
+
"1": low
|
106 |
+
"2": high
|
107 |
+
- name: any_injury
|
108 |
+
dtype: bool
|
109 |
+
- name: metadata
|
110 |
+
struct:
|
111 |
+
- name: series_id
|
112 |
+
dtype: int32
|
113 |
+
- name: patient_id
|
114 |
+
dtype: int32
|
115 |
+
- name: incomplete_organ
|
116 |
+
dtype: bool
|
117 |
+
- name: aortic_hu
|
118 |
+
dtype: float32
|
119 |
+
- name: pixel_representation
|
120 |
+
dtype: int32
|
121 |
+
- name: bits_allocated
|
122 |
+
dtype: int32
|
123 |
+
- name: bits_stored
|
124 |
+
dtype: int32
|
125 |
+
splits:
|
126 |
+
- name: train
|
127 |
+
num_bytes: 58138
|
128 |
+
num_examples: 185
|
129 |
+
- name: test
|
130 |
+
num_bytes: 6600
|
131 |
+
num_examples: 21
|
132 |
+
download_size: 4196738529
|
133 |
+
dataset_size: 64738
|
134 |
+
- config_name: segmentation
|
135 |
+
features:
|
136 |
+
- name: img_path
|
137 |
+
dtype: string
|
138 |
+
- name: seg_path
|
139 |
+
dtype: string
|
140 |
+
- name: metadata
|
141 |
+
struct:
|
142 |
+
- name: series_id
|
143 |
+
dtype: int32
|
144 |
+
- name: patient_id
|
145 |
+
dtype: int32
|
146 |
+
- name: incomplete_organ
|
147 |
+
dtype: bool
|
148 |
+
- name: aortic_hu
|
149 |
+
dtype: float32
|
150 |
+
- name: pixel_representation
|
151 |
+
dtype: int32
|
152 |
+
- name: bits_allocated
|
153 |
+
dtype: int32
|
154 |
+
- name: bits_stored
|
155 |
+
dtype: int32
|
156 |
+
splits:
|
157 |
+
- name: train
|
158 |
+
num_bytes: 50714
|
159 |
+
num_examples: 185
|
160 |
+
- name: test
|
161 |
+
num_bytes: 5757
|
162 |
+
num_examples: 21
|
163 |
+
download_size: 4196631843
|
164 |
+
dataset_size: 56471
|
165 |
task_categories:
|
166 |
+
- image-classification
|
167 |
+
- image-segmentation
|
168 |
pretty_name: RSNA 2023 Abdominal Trauma Detection (Preprocessed)
|
169 |
size_categories:
|
170 |
+
- 1K<n<10K
|
171 |
---
|
172 |
|
173 |
# Dataset Card for RSNA 2023 Abdominal Trauma Detection (Preprocessed)
|
|
|
176 |
|
177 |
- **Homepage:** [https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection](https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection)
|
178 |
- **Source:** [https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data)
|
|
|
179 |
|
180 |
### Dataset Summary
|
181 |
|
182 |
+
This dataset is the preprocessed version of the dataset from [RSNA 2023 Abdominal Trauma Detection Kaggle Competition](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data).
|
183 |
|
184 |
It is tailored for segmentation and classification tasks. It contains 3 different configs as described below:
|
185 |
+
|
186 |
- **classification**:
|
187 |
+
- 4711 instances where each instance includes a CT scan in NIfTI format, target labels, and its relevant metadata.
|
188 |
- **segmentation**:
|
189 |
+
- 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, and its relevant metadata.
|
190 |
- **classification-with-mask**:
|
191 |
+
- 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, target labels, and its relevant metadata.
|
192 |
|
193 |
All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size.
|
194 |
|
|
|
198 |
|
199 |
#### Configuration 1: classification
|
200 |
|
201 |
+
- **Size of downloaded dataset files:** 90.09 GiB
|
|
|
|
|
202 |
|
203 |
An example of an instance in the 'classification' configuration looks as follows:
|
204 |
+
|
205 |
```json
|
206 |
{
|
207 |
+
"img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/25899/21872.nii.gz",
|
208 |
+
"bowel": 0,
|
209 |
+
"extravasation": 0,
|
210 |
+
"kidney": 0,
|
211 |
+
"liver": 0,
|
212 |
+
"spleen": 0,
|
213 |
+
"any_injury": false,
|
214 |
+
"metadata": {
|
215 |
+
"series_id": 21872,
|
216 |
+
"patient_id": 25899,
|
217 |
+
"incomplete_organ": false,
|
218 |
+
"aortic_hu": 113.0,
|
219 |
+
"pixel_representation": 0,
|
220 |
+
"bits_allocated": 16,
|
221 |
+
"bits_stored": 12
|
222 |
+
}
|
223 |
}
|
224 |
```
|
225 |
|
226 |
#### Configuration 2: segmentation
|
227 |
|
228 |
+
- **Size of downloaded dataset files:** 3.91 GiB
|
|
|
|
|
229 |
|
230 |
An example of an instance in the 'segmentation' configuration looks as follows:
|
231 |
+
|
232 |
```json
|
233 |
{
|
234 |
+
"img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/4791/4622.nii.gz",
|
235 |
+
"seg_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/segmentations/4622.nii.gz",
|
236 |
+
"metadata": {
|
237 |
+
"series_id": 4622,
|
238 |
+
"patient_id": 4791,
|
239 |
+
"incomplete_organ": false,
|
240 |
+
"aortic_hu": 223.0,
|
241 |
+
"pixel_representation": 1,
|
242 |
+
"bits_allocated": 16,
|
243 |
+
"bits_stored": 16
|
244 |
+
}
|
245 |
}
|
246 |
```
|
247 |
|
248 |
#### Configuration 3: classification-with-mask
|
249 |
|
250 |
+
- **Size of downloaded dataset files:** 3.91 GiB
|
|
|
|
|
251 |
|
252 |
An example of an instance in the 'classification-with-mask' configuration looks as follows:
|
253 |
+
|
254 |
```json
|
255 |
{
|
256 |
+
"img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/4791/4622.nii.gz",
|
257 |
+
"seg_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/segmentations/4622.nii.gz",
|
258 |
+
"bowel": 0,
|
259 |
+
"extravasation": 0,
|
260 |
+
"kidney": 0,
|
261 |
+
"liver": 1,
|
262 |
+
"spleen": 1,
|
263 |
+
"any_injury": true,
|
264 |
+
"metadata": {
|
265 |
+
"series_id": 4622,
|
266 |
+
"patient_id": 4791,
|
267 |
+
"incomplete_organ": false,
|
268 |
+
"aortic_hu": 223.0,
|
269 |
+
"pixel_representation": 1,
|
270 |
+
"bits_allocated": 16,
|
271 |
+
"bits_stored": 16
|
272 |
+
}
|
273 |
}
|
274 |
```
|
275 |
|
|
|
292 |
|
293 |
### Data Splits
|
294 |
|
295 |
+
Default split:
|
296 |
+
|
297 |
- 0.9:0.1 with random_state = 42
|
298 |
|
299 |
+
| Configuration Name | Train (n_samples) | Test (n_samples) |
|
300 |
+
| ------------------------ | ----------------: | ---------------: |
|
301 |
+
| classification | 4239 | 472 |
|
302 |
+
| segmentation | 185 | 21 |
|
303 |
+
| classification-with-mask | 185 | 21 |
|
304 |
|
305 |
Modify the split proportion:
|
306 |
+
|
307 |
```python
|
308 |
rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", test_size=0.05, random_state=42)
|
309 |
```
|
|
|
311 |
### Citation Information
|
312 |
|
313 |
- Preprocessed dataset:
|
314 |
+
|
315 |
+
```
|
316 |
@InProceedings{huggingface:dataset,
|
317 |
title = {RSNA 2023 Abdominal Trauma Detection Dataset (Preprocessed)},
|
318 |
author={Hong Jia Herng},
|
319 |
year={2023}
|
320 |
}
|
321 |
```
|
322 |
+
|
323 |
- Original dataset:
|
324 |
+
|
325 |
+
```
|
326 |
@misc{rsna-2023-abdominal-trauma-detection,
|
327 |
author = {Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, John Mongan},
|
328 |
title = {RSNA 2023 Abdominal Trauma Detection},
|
|
|
330 |
year = {2023},
|
331 |
url = {https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection}
|
332 |
}
|
333 |
+
```
|