Update rsna-2023-abdominal-trauma-detection.py
Browse files
rsna-2023-abdominal-trauma-detection.py
CHANGED
@@ -156,27 +156,21 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
|
|
156 |
# segmentation: 206 segmentations and the relevant imgs, train_series_meta.csv, train_dicom_tags.parquet
|
157 |
# classification: 4711 all imgs, train.csv, train_series_meta.csv, train_dicom_tags.parquet
|
158 |
# classification-with-mask: 206 segmentations and the relevant imgs, train.csv, train_series_meta.csv, train_dicom_tags.parquet
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
urllib.parse.urljoin(_URL, "train_dicom_tags.parquet")
|
164 |
-
)
|
165 |
-
labels_file = (
|
166 |
-
dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "train.csv"))
|
167 |
-
if self.config.name != "segmentation"
|
168 |
-
else None
|
169 |
)
|
170 |
-
|
171 |
-
series_meta_df = pd.read_csv(series_meta_file)
|
172 |
if (
|
173 |
self.config.name == "classification-with-mask"
|
174 |
or self.config.name == "segmentation"
|
175 |
):
|
176 |
-
series_meta_df = series_meta_df.loc[
|
|
|
|
|
177 |
|
178 |
train_series_meta_df, test_series_meta_df = train_test_split(
|
179 |
-
series_meta_df, test_size=0.1, random_state=42, shuffle=True
|
180 |
)
|
181 |
|
182 |
train_img_files = dl_manager.download(
|
@@ -206,7 +200,7 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
|
|
206 |
).tolist()
|
207 |
)
|
208 |
test_seg_files = dl_manager.download(
|
209 |
-
|
210 |
lambda x: urllib.parse.urljoin(
|
211 |
_URL, f"segmentations/{int(x['series_id'])}.nii.gz"
|
212 |
),
|
@@ -215,7 +209,7 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
|
|
215 |
)
|
216 |
else:
|
217 |
train_series_meta_df, test_series_meta_df = train_test_split(
|
218 |
-
series_meta_df, test_size=0.1, random_state=42, shuffle=True
|
219 |
)
|
220 |
|
221 |
train_img_files = dl_manager.download(
|
@@ -239,44 +233,11 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
|
|
239 |
train_seg_files = None
|
240 |
test_seg_files = None
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
gen_kwargs={
|
246 |
-
"series_ids": train_series_meta_df["series_id"].tolist(),
|
247 |
-
"dicom_tags_file": dicom_tags_file,
|
248 |
-
"series_meta_file": series_meta_file,
|
249 |
-
"labels_file": labels_file,
|
250 |
-
"img_files": train_img_files,
|
251 |
-
"seg_files": train_seg_files,
|
252 |
-
},
|
253 |
-
),
|
254 |
-
datasets.SplitGenerator(
|
255 |
-
name=datasets.Split.TEST,
|
256 |
-
gen_kwargs={
|
257 |
-
"series_ids": test_series_meta_df["series_id"].tolist(),
|
258 |
-
"dicom_tags_file": dicom_tags_file,
|
259 |
-
"series_meta_file": series_meta_file,
|
260 |
-
"labels_file": labels_file,
|
261 |
-
"img_files": test_img_files,
|
262 |
-
"seg_files": test_seg_files,
|
263 |
-
},
|
264 |
-
),
|
265 |
-
]
|
266 |
|
267 |
-
|
268 |
-
self,
|
269 |
-
series_ids,
|
270 |
-
dicom_tags_file,
|
271 |
-
series_meta_file,
|
272 |
-
labels_file,
|
273 |
-
img_files,
|
274 |
-
seg_files,
|
275 |
-
):
|
276 |
-
series_meta_df = pd.read_csv(series_meta_file)
|
277 |
-
dicom_tags_df = datasets.load_dataset("parquet", data_files=dicom_tags_file)[
|
278 |
-
"train"
|
279 |
-
].to_pandas()[
|
280 |
[
|
281 |
"SeriesInstanceUID",
|
282 |
"PixelRepresentation",
|
@@ -284,6 +245,17 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
|
|
284 |
"BitsStored",
|
285 |
]
|
286 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
dicom_tags_df["SeriesID"] = dicom_tags_df["SeriesInstanceUID"].apply(
|
288 |
lambda x: int(x.split(".")[-1])
|
289 |
)
|
@@ -297,19 +269,52 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
|
|
297 |
"BitsStored": "bits_stored",
|
298 |
}
|
299 |
)
|
300 |
-
series_meta_df = pd.merge(
|
301 |
-
left=series_meta_df, right=dicom_tags_df, how="inner", on="series_id"
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
)
|
303 |
-
labels_df = (
|
304 |
pd.read_csv(labels_file) if self.config.name != "segmentation" else None
|
305 |
)
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
if self.config.name == "segmentation":
|
308 |
for key, (series_id, img_path, seg_path) in enumerate(
|
309 |
zip(series_ids, img_files, seg_files)
|
310 |
):
|
311 |
series_meta = (
|
312 |
-
series_meta_df.loc[
|
|
|
|
|
313 |
.iloc[0]
|
314 |
.to_dict()
|
315 |
)
|
@@ -332,13 +337,15 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
|
|
332 |
zip(series_ids, img_files, seg_files)
|
333 |
):
|
334 |
series_meta = (
|
335 |
-
series_meta_df.loc[
|
|
|
|
|
336 |
.iloc[0]
|
337 |
.to_dict()
|
338 |
)
|
339 |
patient_id = series_meta["patient_id"]
|
340 |
label_data = (
|
341 |
-
labels_df.loc[labels_df["patient_id"] == patient_id]
|
342 |
.iloc[0]
|
343 |
.to_dict()
|
344 |
)
|
@@ -390,13 +397,15 @@ class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilde
|
|
390 |
else:
|
391 |
for key, (series_id, img_path) in enumerate(zip(series_ids, img_files)):
|
392 |
series_meta = (
|
393 |
-
series_meta_df.loc[
|
|
|
|
|
394 |
.iloc[0]
|
395 |
.to_dict()
|
396 |
)
|
397 |
patient_id = series_meta["patient_id"]
|
398 |
label_data = (
|
399 |
-
labels_df.loc[labels_df["patient_id"] == patient_id]
|
400 |
.iloc[0]
|
401 |
.to_dict()
|
402 |
)
|
|
|
156 |
# segmentation: 206 segmentations and the relevant imgs, train_series_meta.csv, train_dicom_tags.parquet
|
157 |
# classification: 4711 all imgs, train.csv, train_series_meta.csv, train_dicom_tags.parquet
|
158 |
# classification-with-mask: 206 segmentations and the relevant imgs, train.csv, train_series_meta.csv, train_dicom_tags.parquet
|
159 |
+
self.series_meta_df = pd.read_csv(
|
160 |
+
dl_manager.download_and_extract(
|
161 |
+
urllib.parse.urljoin(_URL, "train_series_meta.csv")
|
162 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
)
|
|
|
|
|
164 |
if (
|
165 |
self.config.name == "classification-with-mask"
|
166 |
or self.config.name == "segmentation"
|
167 |
):
|
168 |
+
self.series_meta_df = self.series_meta_df.loc[
|
169 |
+
self.series_meta_df["has_segmentation"] == 1
|
170 |
+
]
|
171 |
|
172 |
train_series_meta_df, test_series_meta_df = train_test_split(
|
173 |
+
self.series_meta_df, test_size=0.1, random_state=42, shuffle=True
|
174 |
)
|
175 |
|
176 |
train_img_files = dl_manager.download(
|
|
|
200 |
).tolist()
|
201 |
)
|
202 |
test_seg_files = dl_manager.download(
|
203 |
+
test_series_meta_df.apply(
|
204 |
lambda x: urllib.parse.urljoin(
|
205 |
_URL, f"segmentations/{int(x['series_id'])}.nii.gz"
|
206 |
),
|
|
|
209 |
)
|
210 |
else:
|
211 |
train_series_meta_df, test_series_meta_df = train_test_split(
|
212 |
+
self.series_meta_df, test_size=0.1, random_state=42, shuffle=True
|
213 |
)
|
214 |
|
215 |
train_img_files = dl_manager.download(
|
|
|
233 |
train_seg_files = None
|
234 |
test_seg_files = None
|
235 |
|
236 |
+
dicom_tags_file = dl_manager.download_and_extract(
|
237 |
+
urllib.parse.urljoin(_URL, "train_dicom_tags.parquet")
|
238 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
dicom_tags_df = pd.read_parquet(dicom_tags_file)[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
[
|
242 |
"SeriesInstanceUID",
|
243 |
"PixelRepresentation",
|
|
|
245 |
"BitsStored",
|
246 |
]
|
247 |
]
|
248 |
+
|
249 |
+
# dicom_tags_df = datasets.load_dataset("parquet", data_files=dicom_tags_file)[
|
250 |
+
# "train"
|
251 |
+
# ].to_pandas()[
|
252 |
+
# [
|
253 |
+
# "SeriesInstanceUID",
|
254 |
+
# "PixelRepresentation",
|
255 |
+
# "BitsAllocated",
|
256 |
+
# "BitsStored",
|
257 |
+
# ]
|
258 |
+
# ]
|
259 |
dicom_tags_df["SeriesID"] = dicom_tags_df["SeriesInstanceUID"].apply(
|
260 |
lambda x: int(x.split(".")[-1])
|
261 |
)
|
|
|
269 |
"BitsStored": "bits_stored",
|
270 |
}
|
271 |
)
|
272 |
+
self.series_meta_df = pd.merge(
|
273 |
+
left=self.series_meta_df, right=dicom_tags_df, how="inner", on="series_id"
|
274 |
+
)
|
275 |
+
|
276 |
+
labels_file = (
|
277 |
+
dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "train.csv"))
|
278 |
+
if self.config.name != "segmentation"
|
279 |
+
else None
|
280 |
)
|
281 |
+
self.labels_df = (
|
282 |
pd.read_csv(labels_file) if self.config.name != "segmentation" else None
|
283 |
)
|
284 |
|
285 |
+
return [
|
286 |
+
datasets.SplitGenerator(
|
287 |
+
name=datasets.Split.TRAIN,
|
288 |
+
gen_kwargs={
|
289 |
+
"series_ids": train_series_meta_df["series_id"].tolist(),
|
290 |
+
"img_files": train_img_files,
|
291 |
+
"seg_files": train_seg_files,
|
292 |
+
},
|
293 |
+
),
|
294 |
+
datasets.SplitGenerator(
|
295 |
+
name=datasets.Split.TEST,
|
296 |
+
gen_kwargs={
|
297 |
+
"series_ids": test_series_meta_df["series_id"].tolist(),
|
298 |
+
"img_files": test_img_files,
|
299 |
+
"seg_files": test_seg_files,
|
300 |
+
},
|
301 |
+
),
|
302 |
+
]
|
303 |
+
|
304 |
+
def _generate_examples(
|
305 |
+
self,
|
306 |
+
series_ids,
|
307 |
+
img_files,
|
308 |
+
seg_files,
|
309 |
+
):
|
310 |
if self.config.name == "segmentation":
|
311 |
for key, (series_id, img_path, seg_path) in enumerate(
|
312 |
zip(series_ids, img_files, seg_files)
|
313 |
):
|
314 |
series_meta = (
|
315 |
+
self.series_meta_df.loc[
|
316 |
+
self.series_meta_df["series_id"] == series_id
|
317 |
+
]
|
318 |
.iloc[0]
|
319 |
.to_dict()
|
320 |
)
|
|
|
337 |
zip(series_ids, img_files, seg_files)
|
338 |
):
|
339 |
series_meta = (
|
340 |
+
self.series_meta_df.loc[
|
341 |
+
self.series_meta_df["series_id"] == series_id
|
342 |
+
]
|
343 |
.iloc[0]
|
344 |
.to_dict()
|
345 |
)
|
346 |
patient_id = series_meta["patient_id"]
|
347 |
label_data = (
|
348 |
+
self.labels_df.loc[self.labels_df["patient_id"] == patient_id]
|
349 |
.iloc[0]
|
350 |
.to_dict()
|
351 |
)
|
|
|
397 |
else:
|
398 |
for key, (series_id, img_path) in enumerate(zip(series_ids, img_files)):
|
399 |
series_meta = (
|
400 |
+
self.series_meta_df.loc[
|
401 |
+
self.series_meta_df["series_id"] == series_id
|
402 |
+
]
|
403 |
.iloc[0]
|
404 |
.to_dict()
|
405 |
)
|
406 |
patient_id = series_meta["patient_id"]
|
407 |
label_data = (
|
408 |
+
self.labels_df.loc[self.labels_df["patient_id"] == patient_id]
|
409 |
.iloc[0]
|
410 |
.to_dict()
|
411 |
)
|