juewang commited on
Commit
91aeaaa
Β·
1 Parent(s): b123f8f
.gitattributes CHANGED
@@ -1,3 +1,4 @@
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
1
+ *.jsonl filter=lfs diff=lfs merge=lfs -text
2
  *.7z filter=lfs diff=lfs merge=lfs -text
3
  *.arrow filter=lfs diff=lfs merge=lfs -text
4
  *.bin filter=lfs diff=lfs merge=lfs -text
data/arc_challenge.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d64da34cc4eb901214d1c4317a73579c31d0d82d2cfca7d62ceff07f51e2e9c
3
+ size 240469
data/arc_easy.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:376d29e4f199c6899ec3ea22f34f35e62a4b59dbf722d194b02f151b2dca7293
3
+ size 423646
data/boolq.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a3f37660a3909415cdeb102c2dbe06187d607fe7e49bd6a6129bb6dfa5bdc3a
3
+ size 6332634
data/hellaswag.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dc59132b7c9ed7513eb428d8bde1f5214c24aaa196a404c05acee36cc5c9838
3
+ size 15630002
notebooks/.ipynb_checkpoints/convert-lm-eval-harness-checkpoint.ipynb ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "id": "c975c670-97cc-453e-bba6-3639cf8d5e89",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import json\n",
11
+ "from datasets import load_dataset"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 5,
17
+ "id": "e818dca8-bd10-4b89-9fcd-5cd9252b4e07",
18
+ "metadata": {},
19
+ "outputs": [
20
+ {
21
+ "name": "stderr",
22
+ "output_type": "stream",
23
+ "text": [
24
+ "Found cached dataset hellaswag (/home/[email protected]/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae)\n",
25
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:00<00:00, 461.50it/s]\n",
26
+ "Loading cached shuffled indices for dataset at /home/[email protected]/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-aec62727e66b6615.arrow\n",
27
+ "Loading cached shuffled indices for dataset at /home/[email protected]/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-e645cff193ea8a1d.arrow\n",
28
+ "Loading cached shuffled indices for dataset at /home/[email protected]/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-70b4a183b087a019.arrow\n"
29
+ ]
30
+ }
31
+ ],
32
+ "source": [
33
+ "task_name = 'hellaswag'\n",
34
+ "data = load_dataset(task_name)\n",
35
+ "data.shuffle(seed=42)\n",
36
+ "with open(f'../data/{task_name}.jsonl', 'w') as f:\n",
37
+ " for i_item, item in enumerate(data['train']):\n",
38
+ " text = item['ctx'] + item['endings'][int(item['label'])]\n",
39
+ " f.write(\n",
40
+ " json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
41
+ " )"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": 7,
47
+ "id": "c42aae00-be85-4b64-9325-f6a6139c6ee6",
48
+ "metadata": {},
49
+ "outputs": [
50
+ {
51
+ "name": "stderr",
52
+ "output_type": "stream",
53
+ "text": [
54
+ "Found cached dataset boolq (/home/[email protected]/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5)\n",
55
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 845.37it/s]\n",
56
+ "Loading cached shuffled indices for dataset at /home/[email protected]/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5/cache-b77c77fd8280863e.arrow\n",
57
+ "Loading cached shuffled indices for dataset at /home/[email protected]/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5/cache-a6a68560e7f35615.arrow\n"
58
+ ]
59
+ }
60
+ ],
61
+ "source": [
62
+ "task_name = 'boolq'\n",
63
+ "data = load_dataset(task_name)\n",
64
+ "data.shuffle(seed=42)\n",
65
+ "with open(f'../data/{task_name}.jsonl', 'w') as f:\n",
66
+ " for i_item, item in enumerate(data['train']):\n",
67
+ " text = f\"{item['passage']}\\nQuestion: {item['question']}?\\nAnswer: {item['answer']}\"\n",
68
+ " f.write(\n",
69
+ " json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
70
+ " )"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": 8,
76
+ "id": "878216f4-74e4-46ba-bfcd-c95348c10415",
77
+ "metadata": {},
78
+ "outputs": [
79
+ {
80
+ "name": "stderr",
81
+ "output_type": "stream",
82
+ "text": [
83
+ "Downloading builder script: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5.37k/5.37k [00:00<00:00, 38.7MB/s]\n",
84
+ "Downloading metadata: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆοΏ½οΏ½οΏ½β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4.47k/4.47k [00:00<00:00, 32.7MB/s]\n",
85
+ "Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 8.66k/8.66k [00:00<00:00, 53.6MB/s]\n"
86
+ ]
87
+ },
88
+ {
89
+ "name": "stdout",
90
+ "output_type": "stream",
91
+ "text": [
92
+ "Downloading and preparing dataset ai2_arc/ARC-Challenge to /home/[email protected]/.cache/huggingface/datasets/ai2_arc/ARC-Challenge/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6...\n"
93
+ ]
94
+ },
95
+ {
96
+ "name": "stderr",
97
+ "output_type": "stream",
98
+ "text": [
99
+ "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 681M/681M [00:17<00:00, 38.8MB/s]\n",
100
+ " \r"
101
+ ]
102
+ },
103
+ {
104
+ "name": "stdout",
105
+ "output_type": "stream",
106
+ "text": [
107
+ "Dataset ai2_arc downloaded and prepared to /home/[email protected]/.cache/huggingface/datasets/ai2_arc/ARC-Challenge/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6. Subsequent calls will reuse this data.\n"
108
+ ]
109
+ },
110
+ {
111
+ "name": "stderr",
112
+ "output_type": "stream",
113
+ "text": [
114
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:00<00:00, 509.10it/s]\n"
115
+ ]
116
+ }
117
+ ],
118
+ "source": [
119
+ "task_name = 'arc_challenge'\n",
120
+ "data = load_dataset('ai2_arc', 'ARC-Challenge')\n",
121
+ "data.shuffle(seed=42)\n",
122
+ "with open(f'../data/{task_name}.jsonl', 'w') as f:\n",
123
+ " for i_item, item in enumerate(data['train']):\n",
124
+ " i_a = item['choices']['label'].index(item['answerKey'])\n",
125
+ " q = item['question']\n",
126
+ " a = item['choices']['text'][i_a]\n",
127
+ " text = \"Question: \" + q + \"\\nAnswer:\" + a\n",
128
+ " f.write(\n",
129
+ " json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
130
+ " )"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "code",
135
+ "execution_count": 9,
136
+ "id": "7cb51285-d5ce-4ae2-bd7f-ac15e87c4fb7",
137
+ "metadata": {},
138
+ "outputs": [
139
+ {
140
+ "name": "stdout",
141
+ "output_type": "stream",
142
+ "text": [
143
+ "Downloading and preparing dataset ai2_arc/ARC-Easy to /home/[email protected]/.cache/huggingface/datasets/ai2_arc/ARC-Easy/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6...\n"
144
+ ]
145
+ },
146
+ {
147
+ "name": "stderr",
148
+ "output_type": "stream",
149
+ "text": [
150
+ " \r"
151
+ ]
152
+ },
153
+ {
154
+ "name": "stdout",
155
+ "output_type": "stream",
156
+ "text": [
157
+ "Dataset ai2_arc downloaded and prepared to /home/[email protected]/.cache/huggingface/datasets/ai2_arc/ARC-Easy/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6. Subsequent calls will reuse this data.\n"
158
+ ]
159
+ },
160
+ {
161
+ "name": "stderr",
162
+ "output_type": "stream",
163
+ "text": [
164
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆοΏ½οΏ½οΏ½β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:00<00:00, 439.03it/s]\n"
165
+ ]
166
+ }
167
+ ],
168
+ "source": [
169
+ "task_name = 'arc_easy'\n",
170
+ "data = load_dataset('ai2_arc', 'ARC-Easy')\n",
171
+ "data.shuffle(seed=42)\n",
172
+ "with open(f'../data/{task_name}.jsonl', 'w') as f:\n",
173
+ " for i_item, item in enumerate(data['train']):\n",
174
+ " i_a = item['choices']['label'].index(item['answerKey'])\n",
175
+ " q = item['question']\n",
176
+ " a = item['choices']['text'][i_a]\n",
177
+ " text = \"Question: \" + q + \"\\nAnswer:\" + a\n",
178
+ " f.write(\n",
179
+ " json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
180
+ " )"
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "code",
185
+ "execution_count": 10,
186
+ "id": "b3b98d73-4729-40a1-a5ea-51a3bcfd7ffe",
187
+ "metadata": {},
188
+ "outputs": [
189
+ {
190
+ "ename": "FileNotFoundError",
191
+ "evalue": "Unable to resolve any data file that matches '['test[-._ 0-9/]**', '**[-._ 0-9/]test[-._ 0-9/]**', 'testing[-._ 0-9/]**', '**[-._ 0-9/]testing[-._ 0-9/]**', 'eval[-._ 0-9/]**', '**[-._ 0-9/]eval[-._ 0-9/]**', 'evaluation[-._ 0-9/]**', '**[-._ 0-9/]evaluation[-._ 0-9/]**']' at /var/cr06_data/[email protected]/target-data with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.arrow', '.txt', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip']",
192
+ "output_type": "error",
193
+ "traceback": [
194
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
195
+ "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
196
+ "Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m../\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
197
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1785\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\u001b[0m\n\u001b[1;32m 1780\u001b[0m verification_mode \u001b[38;5;241m=\u001b[39m VerificationMode(\n\u001b[1;32m 1781\u001b[0m (verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mBASIC_CHECKS) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m save_infos \u001b[38;5;28;01melse\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS\n\u001b[1;32m 1782\u001b[0m )\n\u001b[1;32m 1784\u001b[0m \u001b[38;5;66;03m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 1785\u001b[0m builder_instance \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset_builder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1786\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1787\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1788\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1789\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1790\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1791\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1792\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1793\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1794\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1795\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1796\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1797\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1798\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1800\u001b[0m \u001b[38;5;66;03m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m 1801\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming:\n",
198
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1514\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, storage_options, **config_kwargs)\u001b[0m\n\u001b[1;32m 1512\u001b[0m download_config \u001b[38;5;241m=\u001b[39m download_config\u001b[38;5;241m.\u001b[39mcopy() \u001b[38;5;28;01mif\u001b[39;00m download_config \u001b[38;5;28;01melse\u001b[39;00m DownloadConfig()\n\u001b[1;32m 1513\u001b[0m download_config\u001b[38;5;241m.\u001b[39muse_auth_token \u001b[38;5;241m=\u001b[39m use_auth_token\n\u001b[0;32m-> 1514\u001b[0m dataset_module \u001b[38;5;241m=\u001b[39m \u001b[43mdataset_module_factory\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1515\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1516\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1517\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1518\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1519\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1520\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1521\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1523\u001b[0m \u001b[38;5;66;03m# Get dataset builder class from the processing script\u001b[39;00m\n\u001b[1;32m 1524\u001b[0m builder_cls \u001b[38;5;241m=\u001b[39m import_main_class(dataset_module\u001b[38;5;241m.\u001b[39mmodule_path)\n",
199
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1165\u001b[0m, in \u001b[0;36mdataset_module_factory\u001b[0;34m(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)\u001b[0m\n\u001b[1;32m 1159\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m LocalDatasetModuleFactoryWithScript(\n\u001b[1;32m 1160\u001b[0m combined_path, download_mode\u001b[38;5;241m=\u001b[39mdownload_mode, dynamic_modules_path\u001b[38;5;241m=\u001b[39mdynamic_modules_path\n\u001b[1;32m 1161\u001b[0m )\u001b[38;5;241m.\u001b[39mget_module()\n\u001b[1;32m 1162\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39misdir(path):\n\u001b[1;32m 1163\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mLocalDatasetModuleFactoryWithoutScript\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1164\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\n\u001b[0;32m-> 1165\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1166\u001b[0m \u001b[38;5;66;03m# Try remotely\u001b[39;00m\n\u001b[1;32m 1167\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m is_relative_path(path) \u001b[38;5;129;01mand\u001b[39;00m path\u001b[38;5;241m.\u001b[39mcount(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n",
200
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:642\u001b[0m, in \u001b[0;36mLocalDatasetModuleFactoryWithoutScript.get_module\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 638\u001b[0m base_path \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpath, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_dir) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_dir \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpath\n\u001b[1;32m 639\u001b[0m patterns \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 640\u001b[0m sanitize_patterns(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_files) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_files \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m get_data_patterns_locally(base_path)\n\u001b[1;32m 641\u001b[0m )\n\u001b[0;32m--> 642\u001b[0m data_files \u001b[38;5;241m=\u001b[39m \u001b[43mDataFilesDict\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_local_or_remote\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 643\u001b[0m \u001b[43m \u001b[49m\u001b[43mpatterns\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 644\u001b[0m \u001b[43m \u001b[49m\u001b[43mbase_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbase_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 645\u001b[0m \u001b[43m \u001b[49m\u001b[43mallowed_extensions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mALL_ALLOWED_EXTENSIONS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 646\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 647\u001b[0m split_modules \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 648\u001b[0m split: infer_module_for_data_files(data_files_list) \u001b[38;5;28;01mfor\u001b[39;00m split, data_files_list \u001b[38;5;129;01min\u001b[39;00m data_files\u001b[38;5;241m.\u001b[39mitems()\n\u001b[1;32m 649\u001b[0m }\n\u001b[1;32m 650\u001b[0m module_name, builder_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(\u001b[38;5;28miter\u001b[39m(split_modules\u001b[38;5;241m.\u001b[39mvalues()))\n",
201
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/data_files.py:792\u001b[0m, in \u001b[0;36mDataFilesDict.from_local_or_remote\u001b[0;34m(cls, patterns, base_path, allowed_extensions, use_auth_token)\u001b[0m\n\u001b[1;32m 789\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m()\n\u001b[1;32m 790\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, patterns_for_key \u001b[38;5;129;01min\u001b[39;00m patterns\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 791\u001b[0m out[key] \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 792\u001b[0m \u001b[43mDataFilesList\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_local_or_remote\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 793\u001b[0m \u001b[43m \u001b[49m\u001b[43mpatterns_for_key\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 794\u001b[0m \u001b[43m \u001b[49m\u001b[43mbase_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbase_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 795\u001b[0m \u001b[43m \u001b[49m\u001b[43mallowed_extensions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallowed_extensions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 796\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 797\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 798\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(patterns_for_key, DataFilesList)\n\u001b[1;32m 799\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m patterns_for_key\n\u001b[1;32m 800\u001b[0m )\n\u001b[1;32m 801\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m out\n",
202
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/data_files.py:748\u001b[0m, in \u001b[0;36mDataFilesList.from_local_or_remote\u001b[0;34m(cls, patterns, base_path, allowed_extensions, use_auth_token)\u001b[0m\n\u001b[1;32m 739\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 740\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_local_or_remote\u001b[39m(\n\u001b[1;32m 741\u001b[0m \u001b[38;5;28mcls\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 745\u001b[0m use_auth_token: Optional[Union[\u001b[38;5;28mbool\u001b[39m, \u001b[38;5;28mstr\u001b[39m]] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 746\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataFilesList\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 747\u001b[0m base_path \u001b[38;5;241m=\u001b[39m base_path \u001b[38;5;28;01mif\u001b[39;00m base_path \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mstr\u001b[39m(Path()\u001b[38;5;241m.\u001b[39mresolve())\n\u001b[0;32m--> 748\u001b[0m data_files \u001b[38;5;241m=\u001b[39m \u001b[43mresolve_patterns_locally_or_by_urls\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbase_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpatterns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallowed_extensions\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 749\u001b[0m origin_metadata \u001b[38;5;241m=\u001b[39m _get_origin_metadata_locally_or_by_urls(data_files, use_auth_token\u001b[38;5;241m=\u001b[39muse_auth_token)\n\u001b[1;32m 750\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m(data_files, origin_metadata)\n",
203
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/data_files.py:355\u001b[0m, in \u001b[0;36mresolve_patterns_locally_or_by_urls\u001b[0;34m(base_path, patterns, allowed_extensions)\u001b[0m\n\u001b[1;32m 353\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m allowed_extensions \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 354\u001b[0m error_msg \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m with any supported extension \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlist\u001b[39m(allowed_extensions)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 355\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m(error_msg)\n\u001b[1;32m 356\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m data_files\n",
204
+ "\u001b[0;31mFileNotFoundError\u001b[0m: Unable to resolve any data file that matches '['test[-._ 0-9/]**', '**[-._ 0-9/]test[-._ 0-9/]**', 'testing[-._ 0-9/]**', '**[-._ 0-9/]testing[-._ 0-9/]**', 'eval[-._ 0-9/]**', '**[-._ 0-9/]eval[-._ 0-9/]**', 'evaluation[-._ 0-9/]**', '**[-._ 0-9/]evaluation[-._ 0-9/]**']' at /var/cr06_data/[email protected]/target-data with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.arrow', '.txt', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip']"
205
+ ]
206
+ }
207
+ ],
208
+ "source": [
209
+ "data = load_dataset('../')"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": null,
215
+ "id": "2fe88a29-86df-4060-8e61-c39b88d2d10e",
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": []
219
+ }
220
+ ],
221
+ "metadata": {
222
+ "kernelspec": {
223
+ "display_name": "nebula-fav2",
224
+ "language": "python",
225
+ "name": "nebula-fav2"
226
+ },
227
+ "language_info": {
228
+ "codemirror_mode": {
229
+ "name": "ipython",
230
+ "version": 3
231
+ },
232
+ "file_extension": ".py",
233
+ "mimetype": "text/x-python",
234
+ "name": "python",
235
+ "nbconvert_exporter": "python",
236
+ "pygments_lexer": "ipython3",
237
+ "version": "3.10.11"
238
+ }
239
+ },
240
+ "nbformat": 4,
241
+ "nbformat_minor": 5
242
+ }
notebooks/convert-lm-eval-harness.ipynb ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "id": "c975c670-97cc-453e-bba6-3639cf8d5e89",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import json\n",
11
+ "from datasets import load_dataset"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 5,
17
+ "id": "e818dca8-bd10-4b89-9fcd-5cd9252b4e07",
18
+ "metadata": {},
19
+ "outputs": [
20
+ {
21
+ "name": "stderr",
22
+ "output_type": "stream",
23
+ "text": [
24
+ "Found cached dataset hellaswag (/home/[email protected]/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae)\n",
25
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:00<00:00, 461.50it/s]\n",
26
+ "Loading cached shuffled indices for dataset at /home/[email protected]/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-aec62727e66b6615.arrow\n",
27
+ "Loading cached shuffled indices for dataset at /home/[email protected]/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-e645cff193ea8a1d.arrow\n",
28
+ "Loading cached shuffled indices for dataset at /home/[email protected]/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-70b4a183b087a019.arrow\n"
29
+ ]
30
+ }
31
+ ],
32
+ "source": [
33
+ "task_name = 'hellaswag'\n",
34
+ "data = load_dataset(task_name)\n",
35
+ "data.shuffle(seed=42)\n",
36
+ "with open(f'../data/{task_name}.jsonl', 'w') as f:\n",
37
+ " for i_item, item in enumerate(data['train']):\n",
38
+ " text = item['ctx'] + item['endings'][int(item['label'])]\n",
39
+ " f.write(\n",
40
+ " json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
41
+ " )"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": 7,
47
+ "id": "c42aae00-be85-4b64-9325-f6a6139c6ee6",
48
+ "metadata": {},
49
+ "outputs": [
50
+ {
51
+ "name": "stderr",
52
+ "output_type": "stream",
53
+ "text": [
54
+ "Found cached dataset boolq (/home/[email protected]/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5)\n",
55
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 845.37it/s]\n",
56
+ "Loading cached shuffled indices for dataset at /home/[email protected]/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5/cache-b77c77fd8280863e.arrow\n",
57
+ "Loading cached shuffled indices for dataset at /home/[email protected]/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5/cache-a6a68560e7f35615.arrow\n"
58
+ ]
59
+ }
60
+ ],
61
+ "source": [
62
+ "task_name = 'boolq'\n",
63
+ "data = load_dataset(task_name)\n",
64
+ "data.shuffle(seed=42)\n",
65
+ "with open(f'../data/{task_name}.jsonl', 'w') as f:\n",
66
+ " for i_item, item in enumerate(data['train']):\n",
67
+ " text = f\"{item['passage']}\\nQuestion: {item['question']}?\\nAnswer: {item['answer']}\"\n",
68
+ " f.write(\n",
69
+ " json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
70
+ " )"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": 8,
76
+ "id": "878216f4-74e4-46ba-bfcd-c95348c10415",
77
+ "metadata": {},
78
+ "outputs": [
79
+ {
80
+ "name": "stderr",
81
+ "output_type": "stream",
82
+ "text": [
83
+ "Downloading builder script: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5.37k/5.37k [00:00<00:00, 38.7MB/s]\n",
84
+ "Downloading metadata: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆοΏ½οΏ½οΏ½β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4.47k/4.47k [00:00<00:00, 32.7MB/s]\n",
85
+ "Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 8.66k/8.66k [00:00<00:00, 53.6MB/s]\n"
86
+ ]
87
+ },
88
+ {
89
+ "name": "stdout",
90
+ "output_type": "stream",
91
+ "text": [
92
+ "Downloading and preparing dataset ai2_arc/ARC-Challenge to /home/[email protected]/.cache/huggingface/datasets/ai2_arc/ARC-Challenge/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6...\n"
93
+ ]
94
+ },
95
+ {
96
+ "name": "stderr",
97
+ "output_type": "stream",
98
+ "text": [
99
+ "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 681M/681M [00:17<00:00, 38.8MB/s]\n",
100
+ " \r"
101
+ ]
102
+ },
103
+ {
104
+ "name": "stdout",
105
+ "output_type": "stream",
106
+ "text": [
107
+ "Dataset ai2_arc downloaded and prepared to /home/[email protected]/.cache/huggingface/datasets/ai2_arc/ARC-Challenge/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6. Subsequent calls will reuse this data.\n"
108
+ ]
109
+ },
110
+ {
111
+ "name": "stderr",
112
+ "output_type": "stream",
113
+ "text": [
114
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:00<00:00, 509.10it/s]\n"
115
+ ]
116
+ }
117
+ ],
118
+ "source": [
119
+ "task_name = 'arc_challenge'\n",
120
+ "data = load_dataset('ai2_arc', 'ARC-Challenge')\n",
121
+ "data.shuffle(seed=42)\n",
122
+ "with open(f'../data/{task_name}.jsonl', 'w') as f:\n",
123
+ " for i_item, item in enumerate(data['train']):\n",
124
+ " i_a = item['choices']['label'].index(item['answerKey'])\n",
125
+ " q = item['question']\n",
126
+ " a = item['choices']['text'][i_a]\n",
127
+ " text = \"Question: \" + q + \"\\nAnswer:\" + a\n",
128
+ " f.write(\n",
129
+ " json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
130
+ " )"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "code",
135
+ "execution_count": 9,
136
+ "id": "7cb51285-d5ce-4ae2-bd7f-ac15e87c4fb7",
137
+ "metadata": {},
138
+ "outputs": [
139
+ {
140
+ "name": "stdout",
141
+ "output_type": "stream",
142
+ "text": [
143
+ "Downloading and preparing dataset ai2_arc/ARC-Easy to /home/[email protected]/.cache/huggingface/datasets/ai2_arc/ARC-Easy/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6...\n"
144
+ ]
145
+ },
146
+ {
147
+ "name": "stderr",
148
+ "output_type": "stream",
149
+ "text": [
150
+ " \r"
151
+ ]
152
+ },
153
+ {
154
+ "name": "stdout",
155
+ "output_type": "stream",
156
+ "text": [
157
+ "Dataset ai2_arc downloaded and prepared to /home/[email protected]/.cache/huggingface/datasets/ai2_arc/ARC-Easy/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6. Subsequent calls will reuse this data.\n"
158
+ ]
159
+ },
160
+ {
161
+ "name": "stderr",
162
+ "output_type": "stream",
163
+ "text": [
164
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆοΏ½οΏ½οΏ½β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:00<00:00, 439.03it/s]\n"
165
+ ]
166
+ }
167
+ ],
168
+ "source": [
169
+ "task_name = 'arc_easy'\n",
170
+ "data = load_dataset('ai2_arc', 'ARC-Easy')\n",
171
+ "data.shuffle(seed=42)\n",
172
+ "with open(f'../data/{task_name}.jsonl', 'w') as f:\n",
173
+ " for i_item, item in enumerate(data['train']):\n",
174
+ " i_a = item['choices']['label'].index(item['answerKey'])\n",
175
+ " q = item['question']\n",
176
+ " a = item['choices']['text'][i_a]\n",
177
+ " text = \"Question: \" + q + \"\\nAnswer:\" + a\n",
178
+ " f.write(\n",
179
+ " json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
180
+ " )"
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "code",
185
+ "execution_count": 10,
186
+ "id": "b3b98d73-4729-40a1-a5ea-51a3bcfd7ffe",
187
+ "metadata": {},
188
+ "outputs": [
189
+ {
190
+ "ename": "FileNotFoundError",
191
+ "evalue": "Unable to resolve any data file that matches '['test[-._ 0-9/]**', '**[-._ 0-9/]test[-._ 0-9/]**', 'testing[-._ 0-9/]**', '**[-._ 0-9/]testing[-._ 0-9/]**', 'eval[-._ 0-9/]**', '**[-._ 0-9/]eval[-._ 0-9/]**', 'evaluation[-._ 0-9/]**', '**[-._ 0-9/]evaluation[-._ 0-9/]**']' at /var/cr06_data/[email protected]/target-data with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.arrow', '.txt', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip']",
192
+ "output_type": "error",
193
+ "traceback": [
194
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
195
+ "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
196
+ "Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m../\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
197
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1785\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\u001b[0m\n\u001b[1;32m 1780\u001b[0m verification_mode \u001b[38;5;241m=\u001b[39m VerificationMode(\n\u001b[1;32m 1781\u001b[0m (verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mBASIC_CHECKS) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m save_infos \u001b[38;5;28;01melse\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS\n\u001b[1;32m 1782\u001b[0m )\n\u001b[1;32m 1784\u001b[0m \u001b[38;5;66;03m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 1785\u001b[0m builder_instance \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset_builder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1786\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1787\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1788\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1789\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1790\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1791\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1792\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1793\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1794\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1795\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1796\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1797\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1798\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1800\u001b[0m \u001b[38;5;66;03m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m 1801\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming:\n",
198
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1514\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, storage_options, **config_kwargs)\u001b[0m\n\u001b[1;32m 1512\u001b[0m download_config \u001b[38;5;241m=\u001b[39m download_config\u001b[38;5;241m.\u001b[39mcopy() \u001b[38;5;28;01mif\u001b[39;00m download_config \u001b[38;5;28;01melse\u001b[39;00m DownloadConfig()\n\u001b[1;32m 1513\u001b[0m download_config\u001b[38;5;241m.\u001b[39muse_auth_token \u001b[38;5;241m=\u001b[39m use_auth_token\n\u001b[0;32m-> 1514\u001b[0m dataset_module \u001b[38;5;241m=\u001b[39m \u001b[43mdataset_module_factory\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1515\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1516\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1517\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1518\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1519\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1520\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1521\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1523\u001b[0m \u001b[38;5;66;03m# Get dataset builder class from the processing script\u001b[39;00m\n\u001b[1;32m 1524\u001b[0m builder_cls \u001b[38;5;241m=\u001b[39m import_main_class(dataset_module\u001b[38;5;241m.\u001b[39mmodule_path)\n",
199
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1165\u001b[0m, in \u001b[0;36mdataset_module_factory\u001b[0;34m(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)\u001b[0m\n\u001b[1;32m 1159\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m LocalDatasetModuleFactoryWithScript(\n\u001b[1;32m 1160\u001b[0m combined_path, download_mode\u001b[38;5;241m=\u001b[39mdownload_mode, dynamic_modules_path\u001b[38;5;241m=\u001b[39mdynamic_modules_path\n\u001b[1;32m 1161\u001b[0m )\u001b[38;5;241m.\u001b[39mget_module()\n\u001b[1;32m 1162\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39misdir(path):\n\u001b[1;32m 1163\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mLocalDatasetModuleFactoryWithoutScript\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1164\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\n\u001b[0;32m-> 1165\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1166\u001b[0m \u001b[38;5;66;03m# Try remotely\u001b[39;00m\n\u001b[1;32m 1167\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m is_relative_path(path) \u001b[38;5;129;01mand\u001b[39;00m path\u001b[38;5;241m.\u001b[39mcount(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n",
200
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:642\u001b[0m, in \u001b[0;36mLocalDatasetModuleFactoryWithoutScript.get_module\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 638\u001b[0m base_path \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpath, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_dir) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_dir \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpath\n\u001b[1;32m 639\u001b[0m patterns \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 640\u001b[0m sanitize_patterns(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_files) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_files \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m get_data_patterns_locally(base_path)\n\u001b[1;32m 641\u001b[0m )\n\u001b[0;32m--> 642\u001b[0m data_files \u001b[38;5;241m=\u001b[39m \u001b[43mDataFilesDict\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_local_or_remote\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 643\u001b[0m \u001b[43m \u001b[49m\u001b[43mpatterns\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 644\u001b[0m \u001b[43m \u001b[49m\u001b[43mbase_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbase_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 645\u001b[0m \u001b[43m \u001b[49m\u001b[43mallowed_extensions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mALL_ALLOWED_EXTENSIONS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 646\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 647\u001b[0m split_modules \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 648\u001b[0m split: infer_module_for_data_files(data_files_list) \u001b[38;5;28;01mfor\u001b[39;00m split, data_files_list \u001b[38;5;129;01min\u001b[39;00m data_files\u001b[38;5;241m.\u001b[39mitems()\n\u001b[1;32m 649\u001b[0m }\n\u001b[1;32m 650\u001b[0m module_name, builder_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(\u001b[38;5;28miter\u001b[39m(split_modules\u001b[38;5;241m.\u001b[39mvalues()))\n",
201
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/data_files.py:792\u001b[0m, in \u001b[0;36mDataFilesDict.from_local_or_remote\u001b[0;34m(cls, patterns, base_path, allowed_extensions, use_auth_token)\u001b[0m\n\u001b[1;32m 789\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m()\n\u001b[1;32m 790\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, patterns_for_key \u001b[38;5;129;01min\u001b[39;00m patterns\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 791\u001b[0m out[key] \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 792\u001b[0m \u001b[43mDataFilesList\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_local_or_remote\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 793\u001b[0m \u001b[43m \u001b[49m\u001b[43mpatterns_for_key\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 794\u001b[0m \u001b[43m \u001b[49m\u001b[43mbase_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbase_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 795\u001b[0m \u001b[43m \u001b[49m\u001b[43mallowed_extensions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallowed_extensions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 796\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 797\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 798\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(patterns_for_key, DataFilesList)\n\u001b[1;32m 799\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m patterns_for_key\n\u001b[1;32m 800\u001b[0m )\n\u001b[1;32m 801\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m out\n",
202
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/data_files.py:748\u001b[0m, in \u001b[0;36mDataFilesList.from_local_or_remote\u001b[0;34m(cls, patterns, base_path, allowed_extensions, use_auth_token)\u001b[0m\n\u001b[1;32m 739\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 740\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_local_or_remote\u001b[39m(\n\u001b[1;32m 741\u001b[0m \u001b[38;5;28mcls\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 745\u001b[0m use_auth_token: Optional[Union[\u001b[38;5;28mbool\u001b[39m, \u001b[38;5;28mstr\u001b[39m]] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 746\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataFilesList\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 747\u001b[0m base_path \u001b[38;5;241m=\u001b[39m base_path \u001b[38;5;28;01mif\u001b[39;00m base_path \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mstr\u001b[39m(Path()\u001b[38;5;241m.\u001b[39mresolve())\n\u001b[0;32m--> 748\u001b[0m data_files \u001b[38;5;241m=\u001b[39m \u001b[43mresolve_patterns_locally_or_by_urls\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbase_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpatterns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallowed_extensions\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 749\u001b[0m origin_metadata \u001b[38;5;241m=\u001b[39m _get_origin_metadata_locally_or_by_urls(data_files, use_auth_token\u001b[38;5;241m=\u001b[39muse_auth_token)\n\u001b[1;32m 750\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m(data_files, origin_metadata)\n",
203
+ "File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/data_files.py:355\u001b[0m, in \u001b[0;36mresolve_patterns_locally_or_by_urls\u001b[0;34m(base_path, patterns, allowed_extensions)\u001b[0m\n\u001b[1;32m 353\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m allowed_extensions \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 354\u001b[0m error_msg \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m with any supported extension \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlist\u001b[39m(allowed_extensions)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 355\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m(error_msg)\n\u001b[1;32m 356\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m data_files\n",
204
+ "\u001b[0;31mFileNotFoundError\u001b[0m: Unable to resolve any data file that matches '['test[-._ 0-9/]**', '**[-._ 0-9/]test[-._ 0-9/]**', 'testing[-._ 0-9/]**', '**[-._ 0-9/]testing[-._ 0-9/]**', 'eval[-._ 0-9/]**', '**[-._ 0-9/]eval[-._ 0-9/]**', 'evaluation[-._ 0-9/]**', '**[-._ 0-9/]evaluation[-._ 0-9/]**']' at /var/cr06_data/[email protected]/target-data with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.arrow', '.txt', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip']"
205
+ ]
206
+ }
207
+ ],
208
+ "source": [
209
+ "data = load_dataset('../')"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": null,
215
+ "id": "2fe88a29-86df-4060-8e61-c39b88d2d10e",
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": []
219
+ }
220
+ ],
221
+ "metadata": {
222
+ "kernelspec": {
223
+ "display_name": "nebula-fav2",
224
+ "language": "python",
225
+ "name": "nebula-fav2"
226
+ },
227
+ "language_info": {
228
+ "codemirror_mode": {
229
+ "name": "ipython",
230
+ "version": 3
231
+ },
232
+ "file_extension": ".py",
233
+ "mimetype": "text/x-python",
234
+ "name": "python",
235
+ "nbconvert_exporter": "python",
236
+ "pygments_lexer": "ipython3",
237
+ "version": "3.10.11"
238
+ }
239
+ },
240
+ "nbformat": 4,
241
+ "nbformat_minor": 5
242
+ }