docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Deserializes a `tf.SparseTensor` from `sparse_tensor_proto`.
Args:
sparse_tensor_proto: A proto representing a `tf.SparseTensor`.
process_leafs: A function to be applied to the leaf valued of the nested
structure.
Returns:
An instance of `tf.SparseTensor`. | def _from_proto_sparse_tensor(sparse_tensor_proto, process_leafs):
if not sparse_tensor_proto.HasField("named_tuple"):
raise base_errors.ModuleInfoError(
"Error while deserializing a SparseTensor: expected proto tuple.")
if sparse_tensor_proto.named_tuple.name != _SPARSE_TENSOR_NAME:
raise base_errors.ModuleInfoError(
"Error while deserializing a SparseTensor: The name of the tuple "
"should have been {} but was {}.".format(
_SPARSE_TENSOR_NAME, sparse_tensor_proto.named_tuple.name))
named_tuple_map = sparse_tensor_proto.named_tuple.map
return tf.SparseTensor(
indices=process_leafs(named_tuple_map["indices"].value),
values=process_leafs(named_tuple_map["values"].value),
dense_shape=process_leafs(named_tuple_map["dense_shape"].value)) | 101,356 |
Serializes `nested_value` into `nested_proto`.
Args:
nested_value: A nested Python value.
nested_proto: A `module_pb2.NestedData` instance to be filled from the value
in `nested_value`.
process_leafs: A function to be applied to the leaf values of the nested
structure.
already_processed: Set of already processed objects (used to avoid
infinite recursion).
Raises:
ModuleInfoError: If `nested_proto` is not an instance of
`module_pb2.NestedData`. | def _nested_to_proto(nested_value, nested_proto, process_leafs,
already_processed):
if not isinstance(nested_proto, module_pb2.NestedData):
raise base_errors.ModuleInfoError("Expected module_pb2.NestedData.")
# If this object was already processed, mark as "unserializable"
# to avoid infinite recursion.
if id(nested_value) in already_processed:
nested_proto.value = ""
return
# Check special types.
for type_name, type_info in six.iteritems(_TO_PROTO_SPECIAL_TYPES):
if type_info.check(nested_value):
nested_proto.special_type.name = type_name
type_info.to_proto(
nested_value, nested_proto.special_type.object,
process_leafs, already_processed)
return
# Check standard types.
if _is_iterable(nested_value):
# Mark this container as "already processed" to avoid infinite recursion.
already_processed.add(id(nested_value))
if isinstance(nested_value, dict):
nested_proto.dict.SetInParent()
for key, child in six.iteritems(nested_value):
str_key = str(key)
child_proto = nested_proto.dict.map[str_key]
_nested_to_proto(child, child_proto, process_leafs, already_processed)
elif isinstance(nested_value, tuple):
# NamedTuple?
if _is_namedtuple(nested_value):
nested_proto.named_tuple.name = type(nested_value).__name__
for str_key in nested_value._fields:
child = getattr(nested_value, str_key)
child_proto = nested_proto.named_tuple.map[str_key]
_nested_to_proto(child, child_proto, process_leafs, already_processed)
else:
nested_proto.tuple.SetInParent()
for child in nested_value:
child_proto = nested_proto.tuple.list.add()
_nested_to_proto(child, child_proto, process_leafs, already_processed)
else:
nested_proto.list.SetInParent()
for child in nested_value:
child_proto = nested_proto.list.list.add()
_nested_to_proto(child, child_proto, process_leafs, already_processed)
else:
nested_proto.value = process_leafs(nested_value) | 101,357 |
Serializes `module_into`.
Args:
module_info: An instance of `ModuleInfo`.
export_scope: Optional `string`. Name scope to remove.
Returns:
An instance of `module_pb2.SonnetModule`. | def _module_info_to_proto(module_info, export_scope=None):
def strip_name_scope(name_scope):
return ops.strip_name_scope(name_scope, export_scope)
def process_leafs(value):
return strip_name_scope(_graph_element_to_path(value))
module_info_def = module_pb2.SonnetModule(
module_name=module_info.module_name,
scope_name=strip_name_scope(module_info.scope_name),
class_name=module_info.class_name)
for connected_subgraph in module_info.connected_subgraphs:
connected_subgraph_info_def = module_info_def.connected_subgraphs.add()
connected_subgraph_info_def.name_scope = strip_name_scope(
connected_subgraph.name_scope)
_nested_to_proto(
connected_subgraph.inputs,
connected_subgraph_info_def.inputs,
process_leafs, set())
_nested_to_proto(
connected_subgraph.outputs,
connected_subgraph_info_def.outputs,
process_leafs, set())
return module_info_def | 101,358 |
Deserializes `nested_proto`.
Args:
nested_proto: An instance of `module_pb2.NestedData`.
process_leafs: A function to be applied to the leaf values of the nested
structure.
Returns:
An instance of `string`, `tuple`, `dict` or `namedtuple`.
Raises:
base_errors.ModuleInfoError: If the probobuf is of the wrong type or
if some of its fields are missing. | def _nested_from_proto(nested_proto, process_leafs):
if not isinstance(nested_proto, module_pb2.NestedData):
raise base_errors.ModuleInfoError("Expected module_pb2.NestedData.")
if nested_proto.HasField("value"):
value = nested_proto.value
if not value:
value = _UnserializableObject()
else:
value = process_leafs(value)
return value
elif nested_proto.HasField("list"):
return [_nested_from_proto(child, process_leafs)
for child in nested_proto.list.list]
elif nested_proto.HasField("tuple"):
return tuple(_nested_from_proto(child, process_leafs)
for child in nested_proto.tuple.list)
elif nested_proto.HasField("dict"):
return {name: _nested_from_proto(child, process_leafs)
for name, child in six.iteritems(nested_proto.dict.map)}
elif nested_proto.HasField("named_tuple"):
tmp_dict = {name: _nested_from_proto(child, process_leafs)
for name, child in six.iteritems(nested_proto.named_tuple.map)}
# Note that this needs to be a named tuple to work with existing usage.
NamedTuple = collections.namedtuple( # pylint: disable=invalid-name
nested_proto.named_tuple.name, tmp_dict.keys())
return NamedTuple(**tmp_dict)
elif nested_proto.HasField("special_type"):
if nested_proto.special_type.name not in _TO_PROTO_SPECIAL_TYPES:
return _UnserializableObject()
type_info = _TO_PROTO_SPECIAL_TYPES[nested_proto.special_type.name]
return type_info.from_proto(nested_proto.special_type.object, process_leafs)
else:
raise base_errors.ModuleInfoError(
"Cannot deserialize a `ModuleInfo` protobuf with no fields.") | 101,359 |
Deserializes `module_info_def` proto.
Args:
module_info_def: An instance of `module_pb2.SonnetModule`.
import_scope: Optional `string`. Name scope to use.
Returns:
An instance of `ModuleInfo`.
Raises:
base_errors.ModuleInfoError: If the probobuf is of the wrong type or
if some of its fields are missing. | def _module_info_from_proto(module_info_def, import_scope=None):
graph = tf.get_default_graph()
def prepend_name_scope(name_scope):
return ops.prepend_name_scope(name_scope, import_scope)
def process_leafs(name):
return _path_to_graph_element(prepend_name_scope(name), graph)
connected_subgraphs = []
module_info = ModuleInfo(
module_name=module_info_def.module_name,
scope_name=prepend_name_scope(module_info_def.scope_name),
class_name=module_info_def.class_name,
connected_subgraphs=connected_subgraphs)
for connected_subgraph_def in module_info_def.connected_subgraphs:
connected_subgraph = ConnectedSubGraph(
module=module_info,
name_scope=prepend_name_scope(connected_subgraph_def.name_scope),
inputs=_nested_from_proto(
connected_subgraph_def.inputs, process_leafs),
outputs=_nested_from_proto(
connected_subgraph_def.outputs, process_leafs))
connected_subgraphs.append(connected_subgraph)
return module_info | 101,360 |
Deserializes the `module_info_def` proto without raising exceptions.
Args:
module_info_def: An instance of `module_pb2.SonnetModule`.
import_scope: Optional `string`. Name scope to use.
Returns:
An instance of `ModuleInfo`. | def _module_info_from_proto_safe(module_info_def, import_scope=None):
try:
return _module_info_from_proto(module_info_def, import_scope)
except Exception as e: # pylint: disable=broad-except
logging.warning(
"Error encountered when deserializing sonnet ModuleInfo:\n%s", str(e))
return None | 101,361 |
Builds the deep LSTM model sub-graph.
Args:
one_hot_input_sequence: A Tensor with the input sequence encoded as a
one-hot representation. Its dimensions should be `[truncation_length,
batch_size, output_size]`.
Returns:
Tuple of the Tensor of output logits for the batch, with dimensions
`[truncation_length, batch_size, output_size]`, and the
final state of the unrolled core,. | def _build(self, one_hot_input_sequence):
input_shape = one_hot_input_sequence.get_shape()
batch_size = input_shape[1]
batch_embed_module = snt.BatchApply(self._embed_module)
input_sequence = batch_embed_module(one_hot_input_sequence)
input_sequence = tf.nn.relu(input_sequence)
initial_state = self._core.initial_state(batch_size)
if self._use_dynamic_rnn:
output_sequence, final_state = tf.nn.dynamic_rnn(
cell=self._core,
inputs=input_sequence,
time_major=True,
initial_state=initial_state)
else:
rnn_input_sequence = tf.unstack(input_sequence)
output, final_state = tf.contrib.rnn.static_rnn(
cell=self._core,
inputs=rnn_input_sequence,
initial_state=initial_state)
output_sequence = tf.stack(output)
batch_output_module = snt.BatchApply(self._output_module)
output_sequence_logits = batch_output_module(output_sequence)
return output_sequence_logits, final_state | 101,367 |
Builds sub-graph to generate a string, sampled from the model.
Args:
initial_logits: Starting logits to sample from.
initial_state: Starting state for the RNN core.
sequence_length: Number of characters to sample.
Returns:
A Tensor of characters, with dimensions `[sequence_length, batch_size,
output_size]`. | def generate_string(self, initial_logits, initial_state, sequence_length):
current_logits = initial_logits
current_state = initial_state
generated_letters = []
for _ in range(sequence_length):
# Sample a character index from distribution.
char_index = tf.squeeze(tf.multinomial(current_logits, 1))
char_one_hot = tf.one_hot(char_index, self._output_size, 1.0, 0.0)
generated_letters.append(char_one_hot)
# Feed character back into the deep_lstm.
gen_out_seq, current_state = self._core(
tf.nn.relu(self._embed_module(char_one_hot)),
current_state)
current_logits = self._output_module(gen_out_seq)
generated_string = tf.stack(generated_letters)
return generated_string | 101,368 |
Connects the core to the graph.
Args:
x: Input `Tensor` of shape `(batch_size, input_size)`.
prev_state: Previous state. This could be a `Tensor`, or a tuple of
`Tensor`s.
Returns:
The tuple `(output, state)` for this core.
Raises:
ValueError: if the `Tensor` `x` does not have rank 2. | def _build(self, x, prev_state):
x.get_shape().with_rank(2)
self._batch_size = x.get_shape().as_list()[0]
self._dtype = x.dtype
x_zeros = tf.concat(
[x, tf.zeros(
shape=(self._batch_size, 1), dtype=self._dtype)], 1)
x_ones = tf.concat(
[x, tf.ones(
shape=(self._batch_size, 1), dtype=self._dtype)], 1)
# Weights for the halting signal
halting_linear = basic.Linear(name="halting_linear", output_size=1)
body = functools.partial(
self._body, halting_linear=halting_linear, x_ones=x_ones)
cumul_halting_init = tf.zeros(shape=(self._batch_size, 1),
dtype=self._dtype)
iteration_init = tf.zeros(shape=(self._batch_size, 1), dtype=self._dtype)
core_output_size = [x.value for x in self._core.output_size]
out_init = tf.zeros(shape=(self._batch_size,) + tuple(core_output_size),
dtype=self._dtype)
cumul_state_init = _nested_zeros_like(prev_state)
remainder_init = tf.zeros(shape=(self._batch_size, 1), dtype=self._dtype)
(unused_final_x, final_out, unused_final_state, final_cumul_state,
unused_final_halting, final_iteration, final_remainder) = tf.while_loop(
self._cond, body, [x_zeros, out_init, prev_state, cumul_state_init,
cumul_halting_init, iteration_init, remainder_init])
act_output = basic.Linear(
name="act_output_linear", output_size=self._output_size)(final_out)
return (act_output, (final_iteration, final_remainder)), final_cumul_state | 101,380 |
Calculate a reasonable embedding size for a vocabulary.
Rule of thumb is 6 * 4th root of vocab_size.
Args:
vocab_size: Size of the input vocabulary.
Returns:
The embedding size to use.
Raises:
ValueError: if `vocab_size` is invalid. | def _embedding_dim(vocab_size):
if not vocab_size or (vocab_size <= 0):
raise ValueError("Invalid vocab_size %g." % vocab_size)
return int(round(6.0 * math.sqrt(math.sqrt(vocab_size)))) | 101,382 |
Lookup embeddings.
Looks up an embedding vector for each value in `ids`. All ids must be within
[0, vocab_size), else an `InvalidArgumentError` is raised at runtime.
Args:
ids: Tensor of dtype int64.
Returns:
Tensor of tf.shape(ids) + [embedding_dim] and dtype float32. | def _build(self, ids):
# Construct embeddings.
if self._existing_vocab is None:
if self.EMBEDDINGS not in self._initializers:
self._initializers[self.EMBEDDINGS] = tf.initializers.random_normal()
self._embeddings = tf.get_variable(
"embeddings",
shape=[self._vocab_size, self._embed_dim],
dtype=tf.float32,
initializer=self._initializers[self.EMBEDDINGS],
partitioner=self._partitioners.get(self.EMBEDDINGS, None),
regularizer=self._regularizers.get(self.EMBEDDINGS, None),
trainable=self._trainable)
else:
self._embeddings = tf.get_variable(
"embeddings",
dtype=tf.float32,
initializer=self._existing_vocab,
regularizer=self._regularizers.get(self.EMBEDDINGS, None),
trainable=self._trainable)
if self._densify_gradients:
# On the backwards pass, we convert the gradient from indexed-slices to a
# regular tensor before sending it back to the parameter server.
# This avoids excess computation on the parameter server.
# In eager mode we do not need the conversion.
# Add a check whether we are in eager mode when it is supported.
embeddings = util.convert_gradient_to_tensor(self._embeddings)
else:
embeddings = self._embeddings
# Lookup embeddings
return tf.nn.embedding_lookup(embeddings, ids, name="embedding_lookup") | 101,384 |
Assembles the module network and adds it to the graph.
The internal computation graph is assembled according to the set of
constraints provided at construction time.
Args:
inputs: Tensor containing a batch of transformation parameters.
Returns:
A batch of warped grids.
Raises:
Error: If the input tensor size is not consistent with the constraints
passed at construction time. | def _build(self, inputs):
input_shape = tf.shape(inputs)
input_dtype = inputs.dtype.as_numpy_dtype
batch_size = tf.expand_dims(input_shape[0], 0)
number_of_params = inputs.get_shape()[1]
if number_of_params != self._constraints.num_free_params:
raise base.Error('Input size is not consistent with constraint '
'definition: {} parameters expected, {} provided.'
.format(self._constraints.num_free_params,
number_of_params))
num_output_dimensions = len(self._psi) // 3
def get_input_slice(start, size):
return basic.SliceByDim([1], [start], [size])(inputs)
warped_grid = []
var_index_offset = 0
number_of_points = np.prod(self._output_shape)
for i in xrange(num_output_dimensions):
if self._psi[i] is not None:
# The i-th output dimension is not fully specified by the constraints,
# the graph is setup to perform matrix multiplication in batch mode.
grid_coord = self._psi[i].astype(input_dtype)
num_active_vars = self._psi[i].shape[0]
active_vars = get_input_slice(var_index_offset, num_active_vars)
warped_coord = tf.matmul(active_vars, grid_coord)
warped_coord = tf.expand_dims(warped_coord, 1)
var_index_offset += num_active_vars
offset = self._psi[num_output_dimensions + i]
if offset is not None:
offset = offset.astype(input_dtype)
# Some entries in the i-th row of the affine matrix were constrained
# and the corresponding matrix multiplications have been precomputed.
tiling_params = tf.concat(
[
batch_size, tf.constant(
1, shape=(1,)), tf.ones_like(offset.shape)
],
0)
offset = offset.reshape((1, 1) + offset.shape)
warped_coord += tf.tile(offset, tiling_params)
else:
# The i-th output dimension is fully specified by the constraints, and
# the corresponding matrix multiplications have been precomputed.
warped_coord = self._psi[num_output_dimensions + i].astype(input_dtype)
tiling_params = tf.concat(
[
batch_size, tf.constant(
1, shape=(1,)), tf.ones_like(warped_coord.shape)
],
0)
warped_coord = warped_coord.reshape((1, 1) + warped_coord.shape)
warped_coord = tf.tile(warped_coord, tiling_params)
warped_coord += self._psi[i + 2 * num_output_dimensions]
# Need to help TF figuring out shape inference since tiling information
# is held in Tensors which are not known until run time.
warped_coord.set_shape([None, 1, number_of_points])
warped_grid.append(warped_coord)
# Reshape all the warped coordinates tensors to match the specified output
# shape and concatenate into a single matrix.
grid_shape = self._output_shape + (1,)
warped_grid = [basic.BatchReshape(grid_shape)(grid) for grid in warped_grid]
return tf.concat(warped_grid, len(grid_shape)) | 101,389 |
Find files matching the given names relative to the given path.
Args:
path (str): The file path to start searching up from.
names (List[str]): The file/directory names to look for.
root (str): The directory at which to stop recursing upwards.
Note:
The path MUST be within the root. | def find_parents(root, path, names):
if not root:
return []
if not os.path.commonprefix((root, path)):
log.warning("Path %s not in %s", path, root)
return []
# Split the relative by directory, generate all the parent directories, then check each of them.
# This avoids running a loop that has different base-cases for unix/windows
# e.g. /a/b and /a/b/c/d/e.py -> ['/a/b', 'c', 'd']
dirs = [root] + os.path.relpath(os.path.dirname(path), root).split(os.path.sep)
# Search each of /a/b/c, /a/b, /a
while dirs:
search_dir = os.path.join(*dirs)
existing = list(filter(os.path.exists, [os.path.join(search_dir, n) for n in names]))
if existing:
return existing
dirs.pop()
# Otherwise nothing
return [] | 102,577 |
Create a new multiprocess.Manager (or return existing one).
Args:
:authkey: string authorization key
:queues: *INTERNAL_USE*
:mode: 'local' indicates that the manager will only be accessible from the same host, otherwise remotely accessible.
Returns:
A TFManager instance, which is also cached in local memory of the Python worker process. | def start(authkey, queues, mode='local'):
global mgr, qdict, kdict
qdict.clear()
kdict.clear()
for q in queues:
qdict[q] = JoinableQueue()
TFManager.register('get_queue', callable=lambda qname: _get_queue(qname))
TFManager.register('get', callable=lambda key: _get(key))
TFManager.register('set', callable=lambda key, value: _set(key, value))
if mode == 'remote':
mgr = TFManager(address=('', 0), authkey=authkey)
else:
mgr = TFManager(authkey=authkey)
mgr.start()
return mgr | 103,040 |
Connect to a multiprocess.Manager.
Args:
:address: unique address to the TFManager, either a unique connection string for 'local', or a (host, port) tuple for remote.
:authkey: string authorization key
Returns:
A TFManager instance referencing the remote TFManager at the supplied address. | def connect(address, authkey):
TFManager.register('get_queue')
TFManager.register('get')
TFManager.register('set')
m = TFManager(address, authkey=authkey)
m.connect()
return m | 103,041 |
Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measures the sparsity of activations.
Args:
x: Tensor
Returns:
nothing | def _activation_summary(x):
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.summary.histogram(tensor_name + '/activations', x)
tf.summary.scalar(tensor_name + '/sparsity',
tf.nn.zero_fraction(x)) | 103,048 |
Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor | def _variable_on_cpu(name, shape, initializer):
with tf.device('/cpu:0'):
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
return var | 103,049 |
Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor | def _variable_with_weight_decay(name, shape, stddev, wd):
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
var = _variable_on_cpu(
name,
shape,
tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var | 103,050 |
Build the CIFAR-10 model.
Args:
images: Images returned from distorted_inputs() or inputs().
Returns:
Logits. | def inference(images):
# We instantiate all variables using tf.get_variable() instead of
# tf.Variable() in order to share variables across multiple GPU training runs.
# If we only ran this model on a single GPU, we could simplify this function
# by replacing all instances of tf.get_variable() with tf.Variable().
#
# conv1
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 3, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv1)
# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME', name='pool1')
# norm1
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm1')
# conv2
with tf.variable_scope('conv2') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 64, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv2)
# norm2
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm2')
# pool2
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1], padding='SAME', name='pool2')
# local3
with tf.variable_scope('local3') as scope:
# Move everything into depth so we can perform a single matrix multiply.
reshape = tf.reshape(pool2, [FLAGS.batch_size, -1])
dim = reshape.get_shape()[1].value
weights = _variable_with_weight_decay('weights', shape=[dim, 384],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
_activation_summary(local3)
# local4
with tf.variable_scope('local4') as scope:
weights = _variable_with_weight_decay('weights', shape=[384, 192],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
_activation_summary(local4)
# linear layer(WX + b),
# We don't apply softmax here because
# tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
# and performs the softmax internally for efficiency.
with tf.variable_scope('softmax_linear') as scope:
weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
stddev=1/192.0, wd=0.0)
biases = _variable_on_cpu('biases', [NUM_CLASSES],
tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
_activation_summary(softmax_linear)
return softmax_linear | 103,052 |
Add L2Loss to all the trainable variables.
Add summary for "Loss" and "Loss/avg".
Args:
logits: Logits from inference().
labels: Labels from distorted_inputs or inputs(). 1-D tensor
of shape [batch_size]
Returns:
Loss tensor of type float. | def loss(logits, labels):
# Calculate the average cross entropy loss across the batch.
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
# The total loss is defined as the cross entropy loss plus all of the weight
# decay terms (L2 loss).
return tf.add_n(tf.get_collection('losses'), name='total_loss') | 103,053 |
Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses. | def _add_loss_summaries(total_loss):
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.summary.scalar(l.op.name + ' (raw)', l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
return loss_averages_op | 103,054 |
Train CIFAR-10 model.
Create an optimizer and apply to all trainable variables. Add moving
average for all trainable variables.
Args:
total_loss: Total loss from loss().
global_step: Integer Variable counting the number of training steps
processed.
Returns:
train_op: op for training. | def train(total_loss, global_step):
# Variables that affect learning rate.
num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
global_step,
decay_steps,
LEARNING_RATE_DECAY_FACTOR,
staircase=True)
tf.summary.scalar('learning_rate', lr)
# Generate moving averages of all losses and associated summaries.
loss_averages_op = _add_loss_summaries(total_loss)
# Compute gradients.
with tf.control_dependencies([loss_averages_op]):
opt = tf.train.GradientDescentOptimizer(lr)
grads = opt.compute_gradients(total_loss)
# Apply gradients.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
# Add histograms for trainable variables.
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
# Add histograms for gradients.
for grad, var in grads:
if grad is not None:
tf.summary.histogram(var.op.name + '/gradients', grad)
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
train_op = tf.no_op(name='train')
return train_op | 103,055 |
Adds a variable to the MODEL_VARIABLES collection.
Optionally it will add the variable to the VARIABLES_TO_RESTORE collection.
Args:
var: a variable.
restore: whether the variable should be added to the
VARIABLES_TO_RESTORE collection. | def add_variable(var, restore=True):
collections = [MODEL_VARIABLES]
if restore:
collections.append(VARIABLES_TO_RESTORE)
for collection in collections:
if var not in tf.get_collection(collection):
tf.add_to_collection(collection, var) | 103,057 |
Gets the list of variables, filtered by scope and/or suffix.
Args:
scope: an optional scope for filtering the variables to return.
suffix: an optional suffix for filtering the variables to return.
Returns:
a copied list of variables with scope and suffix. | def get_variables(scope=None, suffix=None):
candidates = tf.get_collection(MODEL_VARIABLES, scope)[:]
if suffix is not None:
candidates = [var for var in candidates if var.op.name.endswith(suffix)]
return candidates | 103,058 |
Gets the variable uniquely identified by that name.
Args:
name: a name that uniquely identifies the variable.
Returns:
a tensorflow variable.
Raises:
ValueError: if no variable uniquely identified by the name exists. | def get_unique_variable(name):
candidates = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, name)
if not candidates:
raise ValueError('Couldnt find variable %s' % name)
for candidate in candidates:
if candidate.op.name == name:
return candidate
raise ValueError('Variable %s does not uniquely identify a variable', name) | 103,059 |
Returns the global step variable.
Args:
device: Optional device to place the variable. It can be an string or a
function that is called to get the device for the variable.
Returns:
the tensor representing the global step variable. | def global_step(device=''):
global_step_ref = tf.get_collection(tf.GraphKeys.GLOBAL_STEP)
if global_step_ref:
return global_step_ref[0]
else:
collections = [
VARIABLES_TO_RESTORE,
tf.GraphKeys.GLOBAL_VARIABLES,
tf.GraphKeys.GLOBAL_STEP,
]
# Get the device for the variable.
with tf.device(variable_device(device, 'global_step')):
return tf.get_variable('global_step', shape=[], dtype=tf.int64,
initializer=tf.zeros_initializer(),
trainable=False, collections=collections) | 103,061 |
Initialize VariableDeviceChooser.
Args:
num_parameter_servers: number of parameter servers.
ps_device: string representing the parameter server device.
placement: string representing the placement of the variable either CPU:0
or GPU:0. When using parameter servers forced to CPU:0. | def __init__(self,
num_parameter_servers=0,
ps_device='/job:ps',
placement='CPU:0'):
self._num_ps = num_parameter_servers
self._ps_device = ps_device
self._placement = placement if num_parameter_servers == 0 else 'CPU:0'
self._next_task_id = 0 | 103,063 |
Runs Eval once.
Args:
saver: Saver.
summary_writer: Summary writer.
top_1_op: Top 1 op.
top_5_op: Top 5 op.
summary_op: Summary op. | def _eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op):
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
print("ckpt.model_checkpoint_path: {0}".format(ckpt.model_checkpoint_path))
saver.restore(sess, ckpt.model_checkpoint_path)
# Assuming model_checkpoint_path looks something like:
# /my-favorite-path/imagenet_train/model.ckpt-0,
# extract global_step from it.
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
print('Successfully loaded model from %s at step=%s.' %
(ckpt.model_checkpoint_path, global_step))
else:
print('No checkpoint file found')
return
# Start the queue runners.
coord = tf.train.Coordinator()
try:
threads = []
for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
start=True))
num_iter = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
# Counts the number of correct predictions.
count_top_1 = 0.0
count_top_5 = 0.0
total_sample_count = num_iter * FLAGS.batch_size
step = 0
print('%s: starting evaluation on (%s).' % (datetime.now(), FLAGS.subset))
start_time = time.time()
while step < num_iter and not coord.should_stop():
top_1, top_5 = sess.run([top_1_op, top_5_op])
count_top_1 += np.sum(top_1)
count_top_5 += np.sum(top_5)
step += 1
if step % 20 == 0:
duration = time.time() - start_time
sec_per_batch = duration / 20.0
examples_per_sec = FLAGS.batch_size / sec_per_batch
print('%s: [%d batches out of %d] (%.1f examples/sec; %.3f'
'sec/batch)' % (datetime.now(), step, num_iter,
examples_per_sec, sec_per_batch))
start_time = time.time()
# Compute precision @ 1.
precision_at_1 = count_top_1 / total_sample_count
recall_at_5 = count_top_5 / total_sample_count
print('%s: precision @ 1 = %.4f recall @ 5 = %.4f [%d examples]' %
(datetime.now(), precision_at_1, recall_at_5, total_sample_count))
summary = tf.Summary()
summary.ParseFromString(sess.run(summary_op))
summary.value.add(tag='Precision @ 1', simple_value=precision_at_1)
summary.value.add(tag='Recall @ 5', simple_value=recall_at_5)
summary_writer.add_summary(summary, global_step)
except Exception as e: # pylint: disable=broad-except
coord.request_stop(e)
coord.request_stop()
coord.join(threads, stop_grace_period_secs=10) | 103,067 |
mapPartitions function to run single-node inferencing from a checkpoint/saved_model, using the model's input/output mappings.
Args:
:iterator: input RDD partition iterator.
:args: arguments for TFModel, in argparse format
:tf_args: arguments for TensorFlow inferencing code, in argparse or ARGV format.
Returns:
An iterator of result data. | def _run_model(iterator, args, tf_args):
single_node_env(tf_args)
logging.info("===== input_mapping: {}".format(args.input_mapping))
logging.info("===== output_mapping: {}".format(args.output_mapping))
input_tensor_names = [tensor for col, tensor in sorted(args.input_mapping.items())]
output_tensor_names = [tensor for tensor, col in sorted(args.output_mapping.items())]
# if using a signature_def_key, get input/output tensor info from the requested signature
if args.signature_def_key:
assert args.export_dir, "Inferencing with signature_def_key requires --export_dir argument"
logging.info("===== loading meta_graph_def for tag_set ({0}) from saved_model: {1}".format(args.tag_set, args.export_dir))
meta_graph_def = get_meta_graph_def(args.export_dir, args.tag_set)
signature = meta_graph_def.signature_def[args.signature_def_key]
logging.debug("signature: {}".format(signature))
inputs_tensor_info = signature.inputs
logging.debug("inputs_tensor_info: {0}".format(inputs_tensor_info))
outputs_tensor_info = signature.outputs
logging.debug("outputs_tensor_info: {0}".format(outputs_tensor_info))
result = []
global global_sess, global_args
if global_sess and global_args == args:
# if graph/session already loaded/started (and using same args), just reuse it
sess = global_sess
else:
# otherwise, create new session and load graph from disk
tf.reset_default_graph()
sess = tf.Session(graph=tf.get_default_graph())
if args.export_dir:
assert args.tag_set, "Inferencing from a saved_model requires --tag_set"
# load graph from a saved_model
logging.info("===== restoring from saved_model: {}".format(args.export_dir))
loader.load(sess, args.tag_set.split(','), args.export_dir)
elif args.model_dir:
# load graph from a checkpoint
ckpt = tf.train.latest_checkpoint(args.model_dir)
assert ckpt, "Invalid model checkpoint path: {}".format(args.model_dir)
logging.info("===== restoring from checkpoint: {}".format(ckpt + ".meta"))
saver = tf.train.import_meta_graph(ckpt + ".meta", clear_devices=True)
saver.restore(sess, ckpt)
else:
raise Exception("Inferencing requires either --model_dir or --export_dir argument")
global_sess = sess
global_args = args
# get list of input/output tensors (by name)
if args.signature_def_key:
input_tensors = [inputs_tensor_info[t].name for t in input_tensor_names]
output_tensors = [outputs_tensor_info[output_tensor_names[0]].name]
else:
input_tensors = [t + ':0' for t in input_tensor_names]
output_tensors = [t + ':0' for t in output_tensor_names]
logging.info("input_tensors: {0}".format(input_tensors))
logging.info("output_tensors: {0}".format(output_tensors))
# feed data in batches and return output tensors
for tensors in yield_batch(iterator, args.batch_size, len(input_tensor_names)):
inputs_feed_dict = {}
for i in range(len(input_tensors)):
inputs_feed_dict[input_tensors[i]] = tensors[i]
outputs = sess.run(output_tensors, feed_dict=inputs_feed_dict)
lengths = [len(output) for output in outputs]
input_size = len(tensors[0])
assert all([length == input_size for length in lengths]), "Output array sizes {} must match input size: {}".format(lengths, input_size)
python_outputs = [output.tolist() for output in outputs] # convert from numpy to standard python types
result.extend(zip(*python_outputs)) # convert to an array of tuples of "output columns"
return result | 103,069 |
Sets up environment for a single-node TF session.
Args:
:args: command line arguments as either argparse args or argv list | def single_node_env(args):
# setup ARGV for the TF process
if isinstance(args, list):
sys.argv = args
elif args.argv:
sys.argv = args.argv
# setup ENV for Hadoop-compatibility and/or GPU allocation
num_gpus = args.num_gpus if 'num_gpus' in args else 1
util.single_node_env(num_gpus) | 103,070 |
Utility function to read a meta_graph_def from disk.
From `saved_model_cli.py <https://github.com/tensorflow/tensorflow/blob/8e0e8d41a3a8f2d4a6100c2ea1dc9d6c6c4ad382/tensorflow/python/tools/saved_model_cli.py#L186>`_
Args:
:saved_model_dir: path to saved_model.
:tag_set: list of string tags identifying the TensorFlow graph within the saved_model.
Returns:
A TensorFlow meta_graph_def, or raises an Exception otherwise. | def get_meta_graph_def(saved_model_dir, tag_set):
saved_model = reader.read_saved_model(saved_model_dir)
set_of_tags = set(tag_set.split(','))
for meta_graph_def in saved_model.meta_graphs:
if set(meta_graph_def.meta_info_def.tags) == set_of_tags:
return meta_graph_def
raise RuntimeError("MetaGraphDef associated with tag-set {0} could not be found in SavedModel".format(tag_set)) | 103,071 |
Generator that yields batches of a DataFrame iterator.
Args:
:iterable: Spark partition iterator.
:batch_size: number of items to retrieve per invocation.
:num_tensors: number of tensors (columns) expected in each item.
Returns:
An array of ``num_tensors`` arrays, each of length `batch_size` | def yield_batch(iterable, batch_size, num_tensors=1):
tensors = [[] for i in range(num_tensors)]
for item in iterable:
if item is None:
break
for i in range(num_tensors):
tmp = str(item[i]) if type(item[i]) is bytearray else item[i]
tensors[i].append(tmp)
if len(tensors[0]) >= batch_size:
yield tensors
tensors = [[] for i in range(num_tensors)]
if len(tensors[0]) > 0:
yield tensors | 103,072 |
Trains a TensorFlow model and returns a TFModel instance with the same args/params pointing to a checkpoint or saved_model on disk.
Args:
:dataset: A Spark DataFrame with columns that will be mapped to TensorFlow tensors.
Returns:
A TFModel representing the trained model, backed on disk by a TensorFlow checkpoint or saved_model. | def _fit(self, dataset):
sc = SparkContext.getOrCreate()
logging.info("===== 1. train args: {0}".format(self.args))
logging.info("===== 2. train params: {0}".format(self._paramMap))
local_args = self.merge_args_params()
logging.info("===== 3. train args + params: {0}".format(local_args))
if local_args.input_mode == TFCluster.InputMode.TENSORFLOW:
if dfutil.isLoadedDF(dataset):
# if just a DataFrame loaded from tfrecords, just point to original source path
logging.info("Loaded DataFrame of TFRecord.")
local_args.tfrecord_dir = dfutil.loadedDF[dataset]
else:
# otherwise, save as tfrecords and point to save path
assert local_args.tfrecord_dir, "Please specify --tfrecord_dir to export DataFrame to TFRecord."
if self.getInputMapping():
# if input mapping provided, filter only required columns before exporting
dataset = dataset.select(list(self.getInputMapping()))
logging.info("Exporting DataFrame {} as TFRecord to: {}".format(dataset.dtypes, local_args.tfrecord_dir))
dfutil.saveAsTFRecords(dataset, local_args.tfrecord_dir)
logging.info("Done saving")
tf_args = self.args.argv if self.args.argv else local_args
cluster = TFCluster.run(sc, self.train_fn, tf_args, local_args.cluster_size, local_args.num_ps,
local_args.tensorboard, local_args.input_mode, driver_ps_nodes=local_args.driver_ps_nodes)
if local_args.input_mode == TFCluster.InputMode.SPARK:
# feed data, using a deterministic order for input columns (lexicographic by key)
input_cols = sorted(self.getInputMapping())
cluster.train(dataset.select(input_cols).rdd, local_args.epochs)
cluster.shutdown(grace_secs=30)
# Run export function, if provided
if self.export_fn:
assert local_args.export_dir, "Export function requires --export_dir to be set"
logging.info("Exporting saved_model (via export_fn) to: {}".format(local_args.export_dir))
def _export(iterator, fn, args):
single_node_env(args)
fn(args)
# Run on a single exeucutor
sc.parallelize([1], 1).foreachPartition(lambda it: _export(it, self.export_fn, tf_args))
return self._copyValues(TFModel(self.args)) | 103,078 |
Transforms the input DataFrame by applying the _run_model() mapPartitions function.
Args:
:dataset: A Spark DataFrame for TensorFlow inferencing. | def _transform(self, dataset):
spark = SparkSession.builder.getOrCreate()
# set a deterministic order for input/output columns (lexicographic by key)
input_cols = [col for col, tensor in sorted(self.getInputMapping().items())] # input col => input tensor
output_cols = [col for tensor, col in sorted(self.getOutputMapping().items())] # output tensor => output col
# run single-node inferencing on each executor
logging.info("input_cols: {}".format(input_cols))
logging.info("output_cols: {}".format(output_cols))
# merge args + params
logging.info("===== 1. inference args: {0}".format(self.args))
logging.info("===== 2. inference params: {0}".format(self._paramMap))
local_args = self.merge_args_params()
logging.info("===== 3. inference args + params: {0}".format(local_args))
tf_args = self.args.argv if self.args.argv else local_args
rdd_out = dataset.select(input_cols).rdd.mapPartitions(lambda it: _run_model(it, local_args, tf_args))
# convert to a DataFrame-friendly format
rows_out = rdd_out.map(lambda x: Row(*x))
return spark.createDataFrame(rows_out, output_cols) | 103,080 |
Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
height: integer, image height in pixels.
width: integer, image width in pixels. | def _process_image(filename, coder):
# Read the image file.
with tf.gfile.FastGFile(filename, 'r') as f:
image_data = f.read()
# Clean the dirty data.
if _is_png(filename):
# 1 image is a PNG.
print('Converting PNG to JPEG for %s' % filename)
image_data = coder.png_to_jpeg(image_data)
elif _is_cmyk(filename):
# 22 JPEG images are in CMYK colorspace.
print('Converting CMYK to RGB for %s' % filename)
image_data = coder.cmyk_to_rgb(image_data)
# Decode the RGB JPEG.
image = coder.decode_jpeg(image_data)
# Check that image converted to RGB
assert len(image.shape) == 3
height = image.shape[0]
width = image.shape[1]
assert image.shape[2] == 3
return image_data, height, width | 103,090 |
Build a list of human-readable labels.
Args:
synsets: list of strings; each string is a unique WordNet ID.
synset_to_human: dict of synset to human labels, e.g.,
'n02119022' --> 'red fox, Vulpes vulpes'
Returns:
List of human-readable strings corresponding to each synset. | def _find_human_readable_labels(synsets, synset_to_human):
humans = []
for s in synsets:
assert s in synset_to_human, ('Failed to find: %s' % s)
humans.append(synset_to_human[s])
return humans | 103,091 |
Find the bounding boxes for a given image file.
Args:
filenames: list of strings; each string is a path to an image file.
image_to_bboxes: dictionary mapping image file names to a list of
bounding boxes. This list contains 0+ bounding boxes.
Returns:
List of bounding boxes for each image. Note that each entry in this
list might contain from 0+ entries corresponding to the number of bounding
box annotations for the image. | def _find_image_bounding_boxes(filenames, image_to_bboxes):
num_image_bbox = 0
bboxes = []
for f in filenames:
basename = os.path.basename(f)
if basename in image_to_bboxes:
bboxes.append(image_to_bboxes[basename])
num_image_bbox += 1
else:
bboxes.append([])
print('Found %d images with bboxes out of %d images' % (
num_image_bbox, len(filenames)))
return bboxes | 103,092 |
Process a complete data set and save it as a TFRecord.
Args:
name: string, unique identifier specifying the data set.
directory: string, root path to the data set.
num_shards: integer number of shards for this data set.
synset_to_human: dict of synset to human labels, e.g.,
'n02119022' --> 'red fox, Vulpes vulpes'
image_to_bboxes: dictionary mapping image file names to a list of
bounding boxes. This list contains 0+ bounding boxes. | def _process_dataset(name, directory, num_shards, synset_to_human,
image_to_bboxes):
filenames, synsets, labels = _find_image_files(directory, FLAGS.labels_file)
humans = _find_human_readable_labels(synsets, synset_to_human)
bboxes = _find_image_bounding_boxes(filenames, image_to_bboxes)
_process_image_files(name, filenames, synsets, labels,
humans, bboxes, num_shards) | 103,093 |
Construct distorted input for CIFAR training using the Reader ops.
Args:
data_dir: Path to the CIFAR-10 data directory.
batch_size: Number of images per batch.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size. | def distorted_inputs(data_dir, batch_size):
filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in xrange(1, 6)]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
# Create a queue that produces the filenames to read.
filename_queue = tf.train.string_input_producer(filenames)
# Read examples from files in the filename queue.
read_input = read_cifar10(filename_queue)
reshaped_image = tf.cast(read_input.uint8image, tf.float32)
height = IMAGE_SIZE
width = IMAGE_SIZE
# Image processing for training the network. Note the many random
# distortions applied to the image.
# Randomly crop a [height, width] section of the image.
distorted_image = tf.random_crop(reshaped_image, [height, width, 3])
# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)
# Because these operations are not commutative, consider randomizing
# the order their operation.
distorted_image = tf.image.random_brightness(distorted_image,
max_delta=63)
distorted_image = tf.image.random_contrast(distorted_image,
lower=0.2, upper=1.8)
# Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_standardization(distorted_image)
# Set the shapes of tensors.
float_image.set_shape([height, width, 3])
read_input.label.set_shape([1])
# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
min_fraction_of_examples_in_queue)
print ('Filling queue with %d CIFAR images before starting to train. '
'This will take a few minutes.' % min_queue_examples)
# Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, read_input.label,
min_queue_examples, batch_size,
shuffle=True) | 103,105 |
Construct input for CIFAR evaluation using the Reader ops.
Args:
eval_data: bool, indicating if one should use the train or eval data set.
data_dir: Path to the CIFAR-10 data directory.
batch_size: Number of images per batch.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size. | def inputs(eval_data, data_dir, batch_size):
if not eval_data:
filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in xrange(1, 6)]
num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
else:
filenames = [os.path.join(data_dir, 'test_batch.bin')]
num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
# Create a queue that produces the filenames to read.
filename_queue = tf.train.string_input_producer(filenames)
# Read examples from files in the filename queue.
read_input = read_cifar10(filename_queue)
reshaped_image = tf.cast(read_input.uint8image, tf.float32)
height = IMAGE_SIZE
width = IMAGE_SIZE
# Image processing for evaluation.
# Crop the central [height, width] of the image.
resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
height, width)
# Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_standardization(resized_image)
# Set the shapes of tensors.
float_image.set_shape([height, width, 3])
read_input.label.set_shape([1])
# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(num_examples_per_epoch *
min_fraction_of_examples_in_queue)
# Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, read_input.label,
min_queue_examples, batch_size,
shuffle=False) | 103,106 |
Save a Spark DataFrame as TFRecords.
This will convert the DataFrame rows to TFRecords prior to saving.
Args:
:df: Spark DataFrame
:output_dir: Path to save TFRecords | def saveAsTFRecords(df, output_dir):
tf_rdd = df.rdd.mapPartitions(toTFExample(df.dtypes))
tf_rdd.saveAsNewAPIHadoopFile(output_dir, "org.tensorflow.hadoop.io.TFRecordFileOutputFormat",
keyClass="org.apache.hadoop.io.BytesWritable",
valueClass="org.apache.hadoop.io.NullWritable") | 103,108 |
Construct all necessary functions and call run_loop.
Args:
flags_obj: Object containing user specified flags. | def run_census(flags_obj, ctx):
train_file = os.path.join(flags_obj.data_dir, census_dataset.TRAINING_FILE)
test_file = os.path.join(flags_obj.data_dir, census_dataset.EVAL_FILE)
# Train and evaluate the model every `flags.epochs_between_evals` epochs.
def train_input_fn():
return census_dataset.input_fn(
train_file, flags_obj.epochs_between_evals, True, flags_obj.batch_size)
def eval_input_fn():
return census_dataset.input_fn(test_file, 1, False, flags_obj.batch_size)
tensors_to_log = {
'average_loss': '{loss_prefix}head/truediv',
'loss': '{loss_prefix}head/weighted_loss/Sum'
}
# Removing run_loop, since we can only invoke train_and_evaluate once
model_helpers.apply_clean(flags.FLAGS)
model = build_estimator(
model_dir=flags_obj.model_dir, model_type=flags_obj.model_type,
model_column_fn=census_dataset.build_model_columns,
inter_op=flags_obj.inter_op_parallelism_threads,
intra_op=flags_obj.intra_op_parallelism_threads,
ctx=ctx)
loss_prefix = LOSS_PREFIX.get(flags_obj.model_type, '')
tensors_to_log = {k: v.format(loss_prefix=loss_prefix)
for k, v in tensors_to_log.items()}
train_hooks = hooks_helper.get_train_hooks(
flags_obj.hooks, model_dir=flags_obj.model_dir,
batch_size=flags_obj.batch_size, tensors_to_log=tensors_to_log)
# Note: this will only be invoked once, so `--epochs_between_evals` is now effectively `--train_epochs`
# and evaluation will only execute once.
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, hooks=train_hooks)
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn)
tf.estimator.train_and_evaluate(model, train_spec, eval_spec) | 103,116 |
Yields the scope with the default parameters for inception_v3.
Args:
weight_decay: the weight decay for weights variables.
stddev: standard deviation of the truncated guassian weight distribution.
batch_norm_decay: decay for the moving average of batch_norm momentums.
batch_norm_epsilon: small float added to variance to avoid dividing by zero.
Yields:
a arg_scope with the parameters needed for inception_v3. | def inception_v3_parameters(weight_decay=0.00004, stddev=0.1,
batch_norm_decay=0.9997, batch_norm_epsilon=0.001):
# Set weight_decay for weights in Conv and FC layers.
with scopes.arg_scope([ops.conv2d, ops.fc],
weight_decay=weight_decay):
# Set stddev, activation and parameters for batch_norm.
with scopes.arg_scope([ops.conv2d],
stddev=stddev,
activation=tf.nn.relu,
batch_norm_params={
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon}) as arg_scope:
yield arg_scope | 103,119 |
Define a L1 regularizer.
Args:
weight: scale the loss by this factor.
scope: Optional scope for name_scope.
Returns:
a regularizer function. | def l1_regularizer(weight=1.0, scope=None):
def regularizer(tensor):
with tf.name_scope(scope, 'L1Regularizer', [tensor]):
l1_weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='weight')
return tf.multiply(l1_weight, tf.reduce_sum(tf.abs(tensor)), name='value')
return regularizer | 103,123 |
Define a L2 regularizer.
Args:
weight: scale the loss by this factor.
scope: Optional scope for name_scope.
Returns:
a regularizer function. | def l2_regularizer(weight=1.0, scope=None):
def regularizer(tensor):
with tf.name_scope(scope, 'L2Regularizer', [tensor]):
l2_weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='weight')
return tf.multiply(l2_weight, tf.nn.l2_loss(tensor), name='value')
return regularizer | 103,124 |
Define a L1L2 regularizer.
Args:
weight_l1: scale the L1 loss by this factor.
weight_l2: scale the L2 loss by this factor.
scope: Optional scope for name_scope.
Returns:
a regularizer function. | def l1_l2_regularizer(weight_l1=1.0, weight_l2=1.0, scope=None):
def regularizer(tensor):
with tf.name_scope(scope, 'L1L2Regularizer', [tensor]):
weight_l1_t = tf.convert_to_tensor(weight_l1,
dtype=tensor.dtype.base_dtype,
name='weight_l1')
weight_l2_t = tf.convert_to_tensor(weight_l2,
dtype=tensor.dtype.base_dtype,
name='weight_l2')
reg_l1 = tf.multiply(weight_l1_t, tf.reduce_sum(tf.abs(tensor)),
name='value_l1')
reg_l2 = tf.multiply(weight_l2_t, tf.nn.l2_loss(tensor),
name='value_l2')
return tf.add(reg_l1, reg_l2, name='value')
return regularizer | 103,125 |
Define a L1Loss, useful for regularize, i.e. lasso.
Args:
tensor: tensor to regularize.
weight: scale the loss by this factor.
scope: Optional scope for name_scope.
Returns:
the L1 loss op. | def l1_loss(tensor, weight=1.0, scope=None):
with tf.name_scope(scope, 'L1Loss', [tensor]):
weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='loss_weight')
loss = tf.multiply(weight, tf.reduce_sum(tf.abs(tensor)), name='value')
tf.add_to_collection(LOSSES_COLLECTION, loss)
return loss | 103,126 |
Define a L2Loss, useful for regularize, i.e. weight decay.
Args:
tensor: tensor to regularize.
weight: an optional weight to modulate the loss.
scope: Optional scope for name_scope.
Returns:
the L2 loss op. | def l2_loss(tensor, weight=1.0, scope=None):
with tf.name_scope(scope, 'L2Loss', [tensor]):
weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='loss_weight')
loss = tf.multiply(weight, tf.nn.l2_loss(tensor), name='value')
tf.add_to_collection(LOSSES_COLLECTION, loss)
return loss | 103,127 |
Decorates a function with args so it can be used within an arg_scope.
Args:
func: function to decorate.
Returns:
A tuple with the decorated function func_with_args(). | def add_arg_scope(func):
@functools.wraps(func)
def func_with_args(*args, **kwargs):
current_scope = _current_arg_scope()
current_args = kwargs
key_func = (func.__module__, func.__name__)
if key_func in current_scope:
current_args = current_scope[key_func].copy()
current_args.update(kwargs)
return func(*args, **current_args)
_add_op(func)
return func_with_args | 103,132 |
Returns this executor's "singleton" instance of the multiprocessing.Manager, reconnecting per python-worker if needed.
Args:
:cluster_info: cluster node reservations
:host: host IP address
:executor_id: unique id per executor (created during initial call to run())
Returns:
TFManager instance for this executor/python-worker | def _get_manager(cluster_info, host, executor_id):
for node in cluster_info:
if node['host'] == host and node['executor_id'] == executor_id:
addr = node['addr']
authkey = node['authkey']
TFSparkNode.mgr = TFManager.connect(addr, authkey)
break
if TFSparkNode.mgr is None:
msg = "No TFManager found on this node, please ensure that:\n" + \
"1. Spark num_executors matches TensorFlow cluster_size\n" + \
"2. Spark cores/tasks per executor is 1.\n" + \
"3. Spark dynamic allocation is disabled."
raise Exception(msg)
logging.info("Connected to TFSparkNode.mgr on {0}, executor={1}, state={2}".format(host, executor_id, str(TFSparkNode.mgr.get('state'))))
return TFSparkNode.mgr | 103,134 |
Feeds Spark partitions into the shared multiprocessing.Queue.
Args:
:cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc)
:cluster_meta: dictionary of cluster metadata (e.g. cluster_id, reservation.Server address, etc)
:feed_timeout: number of seconds after which data feeding times out (600 sec default)
:qname: *INTERNAL_USE*
Returns:
A dataRDD.mapPartitions() function | def train(cluster_info, cluster_meta, feed_timeout=600, qname='input'):
def _train(iter):
# get shared queue, reconnecting if necessary
mgr = _get_manager(cluster_info, util.get_ip_address(), util.read_executor_id())
try:
queue = mgr.get_queue(qname)
equeue = mgr.get_queue('error')
except (AttributeError, KeyError):
msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(qname)
raise Exception(msg)
state = str(mgr.get('state'))
logging.info("mgr.state={0}".format(state))
terminating = state == "'terminating'"
if terminating:
logging.info("mgr is terminating, skipping partition")
count = sum(1 for item in iter)
logging.info("Skipped {0} items from partition".format(count))
else:
logging.info("Feeding partition {0} into {1} queue {2}".format(iter, qname, queue))
count = 0
for item in iter:
count += 1
queue.put(item, block=True)
# wait for consumers to finish processing all items in queue before "finishing" this iterator
joinThr = Thread(target=queue.join)
joinThr.start()
timeout = feed_timeout
while (joinThr.isAlive()):
if (not equeue.empty()):
e_str = equeue.get()
equeue.task_done()
raise Exception("exception in worker:\n" + e_str)
time.sleep(1)
timeout -= 1
if timeout <= 0:
raise Exception("Timeout while feeding partition")
logging.info("Processed {0} items in partition".format(count))
# check if TF is terminating feed after this partition
if not terminating:
state = str(mgr.get('state'))
terminating = state == "'terminating'"
if terminating:
try:
logging.info("TFSparkNode: requesting stop")
client = reservation.Client(cluster_meta['server_addr'])
client.request_stop()
client.close()
except Exception as e:
# ignore any errors while requesting stop
logging.debug("Error while requesting stop: {0}".format(e))
return [terminating]
return _train | 103,136 |
Feeds Spark partitions into the shared multiprocessing.Queue and returns inference results.
Args:
:cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc)
:feed_timeout: number of seconds after which data feeding times out (600 sec default)
:qname: *INTERNAL_USE*
Returns:
A dataRDD.mapPartitions() function | def inference(cluster_info, feed_timeout=600, qname='input'):
def _inference(iter):
# get shared queue, reconnecting if necessary
mgr = _get_manager(cluster_info, util.get_ip_address(), util.read_executor_id())
try:
queue_in = mgr.get_queue(qname)
equeue = mgr.get_queue('error')
except (AttributeError, KeyError):
msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(qname)
raise Exception(msg)
logging.info("Feeding partition {0} into {1} queue {2}".format(iter, qname, queue_in))
count = 0
for item in iter:
count += 1
queue_in.put(item, block=True)
# signal "end of partition"
queue_in.put(marker.EndPartition())
# skip empty partitions
if count == 0:
return []
# wait for consumers to finish processing all items in queue before "finishing" this iterator
joinThr = Thread(target=queue_in.join)
joinThr.start()
timeout = feed_timeout
while (joinThr.isAlive()):
if (not equeue.empty()):
e_str = equeue.get()
equeue.task_done()
raise Exception("exception in worker:\n" + e_str)
time.sleep(1)
timeout -= 1
if timeout <= 0:
raise Exception("Timeout while feeding partition")
logging.info("Processed {0} items in partition".format(count))
# read result queue
results = []
queue_out = mgr.get_queue('output')
while count > 0:
result = queue_out.get(block=True)
results.append(result)
count -= 1
queue_out.task_done()
logging.info("Finished processing partition")
return results
return _inference | 103,137 |
Stops all TensorFlow nodes by feeding ``None`` into the multiprocessing.Queues.
Args:
:cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc).
:queues: *INTERNAL_USE*
Returns:
A nodeRDD.mapPartitions() function | def shutdown(cluster_info, queues=['input']):
def _shutdown(iter):
host = util.get_ip_address()
executor_id = util.read_executor_id()
# reconnect to shared queue
mgr = _get_manager(cluster_info, host, executor_id)
# send SIGTERM to Tensorboard proc (if running)
for node in cluster_info:
if node['host'] == host and node['executor_id'] == executor_id:
tb_pid = node['tb_pid']
if tb_pid != 0:
logging.info("Stopping tensorboard (pid={0})".format(tb_pid))
subprocess.Popen(["kill", str(tb_pid)])
# terminate any listening queues
logging.info("Stopping all queues")
for q in queues:
try:
queue = mgr.get_queue(q)
logging.info("Feeding None into {0} queue".format(q))
queue.put(None, block=True)
except (AttributeError, KeyError):
msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(q)
raise Exception(msg)
logging.info("Setting mgr.state to 'stopped'")
mgr.set('state', 'stopped')
return [True]
return _shutdown | 103,138 |
Adds all losses for the model.
Note the final loss is not returned. Instead, the list of losses are collected
by slim.losses. The losses are accumulated in tower_loss() and summed to
calculate the total loss.
Args:
logits: List of logits from inference(). Each entry is a 2-D float Tensor.
labels: Labels from distorted_inputs or inputs(). 1-D tensor
of shape [batch_size]
batch_size: integer | def loss(logits, labels, batch_size=None):
if not batch_size:
batch_size = FLAGS.batch_size
# Reshape the labels into a dense Tensor of
# shape [FLAGS.batch_size, num_classes].
sparse_labels = tf.reshape(labels, [batch_size, 1])
indices = tf.reshape(tf.range(batch_size), [batch_size, 1])
concated = tf.concat(axis=1, values=[indices, sparse_labels])
num_classes = logits[0].get_shape()[-1].value
dense_labels = tf.sparse_to_dense(concated,
[batch_size, num_classes],
1.0, 0.0)
# Cross entropy loss for the main softmax prediction.
slim.losses.cross_entropy_loss(logits[0],
dense_labels,
label_smoothing=0.1,
weight=1.0)
# Cross entropy loss for the auxiliary softmax head.
slim.losses.cross_entropy_loss(logits[1],
dense_labels,
label_smoothing=0.1,
weight=0.4,
scope='aux_loss') | 103,167 |
Convenience function to create a Tensorflow-compatible absolute HDFS path from relative paths
Args:
:ctx: TFNodeContext containing the metadata specific to this node in the cluster.
:path: path to convert
Returns:
An absolute path prefixed with the correct filesystem scheme. | def hdfs_path(ctx, path):
# All Hadoop-Compatible File System Schemes (as of Hadoop 3.0.x):
HADOOP_SCHEMES = ['adl://',
'file://',
'hdfs://',
'oss://',
's3://',
's3a://',
's3n://',
'swift://',
'viewfs://',
'wasb://']
if (any(path.startswith(scheme) for scheme in HADOOP_SCHEMES)):
# absolute path w/ scheme, just return as-is
return path
elif path.startswith("/"):
# absolute path w/o scheme, just prepend w/ defaultFS
return ctx.defaultFS + path
else:
# relative path, prepend defaultFS + standard working dir
if ctx.defaultFS.startswith("hdfs://") or ctx.defaultFS.startswith("viewfs://"):
return "{0}/user/{1}/{2}".format(ctx.defaultFS, getpass.getuser(), path)
elif ctx.defaultFS.startswith("file://"):
return "{0}/{1}/{2}".format(ctx.defaultFS, ctx.working_dir[1:], path)
else:
logging.warn("Unknown scheme {0} with relative path: {1}".format(ctx.defaultFS, path))
return "{0}/{1}".format(ctx.defaultFS, path) | 103,168 |
Push a batch of output results to the Spark output RDD of ``TFCluster.inference()``.
Note: this currently expects a one-to-one mapping of input to output data, so the length of the ``results`` array should match the length of
the previously retrieved batch of input data.
Args:
:results: array of output data for the equivalent batch of input data. | def batch_results(self, results):
logging.debug("batch_results() invoked")
queue = self.mgr.get_queue(self.qname_out)
for item in results:
queue.put(item, block=True)
logging.debug("batch_results() returning data") | 103,173 |
Get list of free GPUs according to nvidia-smi.
This will retry for ``MAX_RETRIES`` times until the requested number of GPUs are available.
Args:
:num_gpu: number of GPUs desired.
:worker_index: index "hint" for allocation of available GPUs.
Returns:
Comma-delimited string of GPU ids, or raises an Exception if the requested number of GPUs could not be found. | def get_gpus(num_gpu=1, worker_index=-1):
# get list of gpus (index, uuid)
list_gpus = subprocess.check_output(["nvidia-smi", "--list-gpus"]).decode()
logging.debug("all GPUs:\n{0}".format(list_gpus))
# parse index and guid
gpus = [x for x in list_gpus.split('\n') if len(x) > 0]
def parse_gpu(gpu_str):
cols = gpu_str.split(' ')
return cols[5].split(')')[0], cols[1].split(':')[0]
gpu_list = [parse_gpu(gpu) for gpu in gpus]
free_gpus = []
retries = 0
while len(free_gpus) < num_gpu and retries < MAX_RETRIES:
smi_output = subprocess.check_output(["nvidia-smi", "--format=csv,noheader,nounits", "--query-compute-apps=gpu_uuid"]).decode()
logging.debug("busy GPUs:\n{0}".format(smi_output))
busy_uuids = [x for x in smi_output.split('\n') if len(x) > 0]
for uuid, index in gpu_list:
if uuid not in busy_uuids:
free_gpus.append(index)
if len(free_gpus) < num_gpu:
logging.warn("Unable to find available GPUs: requested={0}, available={1}".format(num_gpu, len(free_gpus)))
retries += 1
time.sleep(30 * retries)
free_gpus = []
logging.info("Available GPUs: {}".format(free_gpus))
# if still can't find available GPUs, raise exception
if len(free_gpus) < num_gpu:
smi_output = subprocess.check_output(["nvidia-smi", "--format=csv", "--query-compute-apps=gpu_uuid,pid,process_name,used_gpu_memory"]).decode()
logging.info(": {0}".format(smi_output))
raise Exception("Unable to find {} free GPU(s)\n{}".format(num_gpu, smi_output))
# Get logical placement
num_available = len(free_gpus)
if worker_index == -1:
# use original random placement
random.shuffle(free_gpus)
proposed_gpus = free_gpus[:num_gpu]
else:
# ordered by worker index
if worker_index * num_gpu + num_gpu > num_available:
worker_index = worker_index * num_gpu % num_available
proposed_gpus = free_gpus[worker_index * num_gpu:(worker_index * num_gpu + num_gpu)]
logging.info("Proposed GPUs: {}".format(proposed_gpus))
return ','.join(str(x) for x in proposed_gpus) | 103,182 |
Get available GPUs according to utilization thresholds.
Args:
:max_gpu_utilization: percent utilization threshold to consider a GPU "free"
:min_free_memory: percent free memory to consider a GPU "free"
:num_gpu: number of requested GPUs
Returns:
A tuple of (available_gpus, minimum_free_memory), where available_gpus is a comma-delimited string of GPU ids, and minimum_free_memory
is the lowest amount of free memory available on the available_gpus. | def _get_free_gpu(max_gpu_utilization=40, min_free_memory=0.5, num_gpu=1):
def get_gpu_info():
# Get the gpu information
gpu_info = subprocess.check_output(["nvidia-smi", "--format=csv,noheader,nounits", "--query-gpu=index,memory.total,memory.free,memory.used,utilization.gpu"]).decode()
gpu_info = gpu_info.split('\n')
gpu_info_array = []
# Check each gpu
for line in gpu_info:
if len(line) > 0:
gpu_id, total_memory, free_memory, used_memory, gpu_util = line.split(',')
gpu_memory_util = float(used_memory) / float(total_memory)
gpu_info_array.append((float(gpu_util), gpu_memory_util, gpu_id))
return(gpu_info_array)
# Read the gpu information multiple times
num_times_to_average = 5
current_array = []
for ind in range(num_times_to_average):
current_array.append(get_gpu_info())
time.sleep(1)
# Get number of gpus
num_gpus = len(current_array[0])
# Average the gpu information
avg_array = [(0, 0, str(x)) for x in range(num_gpus)]
for ind in range(num_times_to_average):
for gpu_ind in range(num_gpus):
avg_array[gpu_ind] = (avg_array[gpu_ind][0] + current_array[ind][gpu_ind][0], avg_array[gpu_ind][1] + current_array[ind][gpu_ind][1], avg_array[gpu_ind][2])
for gpu_ind in range(num_gpus):
avg_array[gpu_ind] = (float(avg_array[gpu_ind][0]) / num_times_to_average, float(avg_array[gpu_ind][1]) / num_times_to_average, avg_array[gpu_ind][2])
avg_array.sort()
gpus_found = 0
gpus_to_use = ""
free_memory = 1.0
# Return the least utilized GPUs if it's utilized less than max_gpu_utilization and amount of free memory is at least min_free_memory
# Otherwise, run in cpu only mode
for current_gpu in avg_array:
if current_gpu[0] < max_gpu_utilization and (1 - current_gpu[1]) > min_free_memory:
if gpus_found == 0:
gpus_to_use = current_gpu[2]
free_memory = 1 - current_gpu[1]
else:
gpus_to_use = gpus_to_use + "," + current_gpu[2]
free_memory = min(free_memory, 1 - current_gpu[1])
gpus_found = gpus_found + 1
if gpus_found == num_gpu:
break
return gpus_to_use, free_memory | 103,183 |
Build an Example proto for an example.
Args:
filename: string, path to an image file, e.g., '/path/to/example.JPG'
image_buffer: string, JPEG encoding of RGB image
label: integer, identifier for the ground truth for the network
text: string, unique human-readable, e.g. 'dog'
height: integer, image height in pixels
width: integer, image width in pixels
Returns:
Example proto | def _convert_to_example(filename, image_buffer, label, text, height, width):
colorspace = 'RGB'
channels = 3
image_format = 'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': _int64_feature(height),
'image/width': _int64_feature(width),
'image/colorspace': _bytes_feature(tf.compat.as_bytes(colorspace)),
'image/channels': _int64_feature(channels),
'image/class/label': _int64_feature(label),
'image/class/text': _bytes_feature(tf.compat.as_bytes(text)),
'image/format': _bytes_feature(tf.compat.as_bytes(image_format)),
'image/filename': _bytes_feature(tf.compat.as_bytes(os.path.basename(filename))),
'image/encoded': _bytes_feature(tf.compat.as_bytes(image_buffer))}))
return example | 103,184 |
Process and save list of images as TFRecord of Example protos.
Args:
name: string, unique identifier specifying the data set
filenames: list of strings; each string is a path to an image file
texts: list of strings; each string is human readable, e.g. 'dog'
labels: list of integer; each integer identifies the ground truth
num_shards: integer number of shards for this data set. | def _process_image_files(name, filenames, texts, labels, num_shards):
assert len(filenames) == len(texts)
assert len(filenames) == len(labels)
# Break all images into batches with a [ranges[i][0], ranges[i][1]].
spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int)
ranges = []
for i in range(len(spacing) - 1):
ranges.append([spacing[i], spacing[i+1]])
# Launch a thread for each batch.
print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges))
sys.stdout.flush()
# Create a mechanism for monitoring when all threads are finished.
coord = tf.train.Coordinator()
# Create a generic TensorFlow-based utility for converting all image codings.
coder = ImageCoder()
threads = []
for thread_index in range(len(ranges)):
args = (coder, thread_index, ranges, name, filenames,
texts, labels, num_shards)
t = threading.Thread(target=_process_image_files_batch, args=args)
t.start()
threads.append(t)
# Wait for all the threads to terminate.
coord.join(threads)
print('%s: Finished writing all %d images in data set.' %
(datetime.now(), len(filenames)))
sys.stdout.flush() | 103,186 |
Process a complete data set and save it as a TFRecord.
Args:
name: string, unique identifier specifying the data set.
directory: string, root path to the data set.
num_shards: integer number of shards for this data set.
labels_file: string, path to the labels file. | def _process_dataset(name, directory, num_shards, labels_file):
filenames, texts, labels = _find_image_files(directory, labels_file)
_process_image_files(name, filenames, texts, labels, num_shards) | 103,188 |
Decode a JPEG string into one 3-D float image Tensor.
Args:
image_buffer: scalar string Tensor.
scope: Optional scope for name_scope.
Returns:
3-D float Tensor with values ranging from [0, 1). | def decode_jpeg(image_buffer, scope=None):
with tf.name_scope(values=[image_buffer], name=scope,
default_name='decode_jpeg'):
# Decode the string as an RGB JPEG.
# Note that the resulting image contains an unknown height and width
# that is set dynamically by decode_jpeg. In other words, the height
# and width of image is unknown at compile-time.
image = tf.image.decode_jpeg(image_buffer, channels=3)
# After this point, all image pixels reside in [0,1)
# until the very end, when they're rescaled to (-1, 1). The various
# adjust_* ops all require this range for dtype float.
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
return image | 103,193 |
Distort the color of the image.
Each color distortion is non-commutative and thus ordering of the color ops
matters. Ideally we would randomly permute the ordering of the color ops.
Rather then adding that level of complication, we select a distinct ordering
of color ops for each preprocessing thread.
Args:
image: Tensor containing single image.
thread_id: preprocessing thread ID.
scope: Optional scope for name_scope.
Returns:
color-distorted image | def distort_color(image, thread_id=0, scope=None):
with tf.name_scope(values=[image], name=scope, default_name='distort_color'):
color_ordering = thread_id % 2
if color_ordering == 0:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
elif color_ordering == 1:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
# The random_* ops do not necessarily clamp.
image = tf.clip_by_value(image, 0.0, 1.0)
return image | 103,194 |
Prepare one image for evaluation.
Args:
image: 3-D float Tensor
height: integer
width: integer
scope: Optional scope for name_scope.
Returns:
3-D float Tensor of prepared image. | def eval_image(image, height, width, scope=None):
with tf.name_scope(values=[image, height, width], name=scope,
default_name='eval_image'):
# Crop the central region of the image with an area containing 87.5% of
# the original image.
image = tf.image.central_crop(image, central_fraction=0.875)
# Resize the image to the original height and width.
image = tf.expand_dims(image, 0)
image = tf.image.resize_bilinear(image, [height, width],
align_corners=False)
image = tf.squeeze(image, [0])
return image | 103,196 |
Export to SavedModel format.
Args:
model: Estimator object
model_type: string indicating model type. "wide", "deep" or "wide_deep"
export_dir: directory to export the model.
model_column_fn: Function to generate model feature columns. | def export_model(model, model_type, export_dir, model_column_fn):
wide_columns, deep_columns = model_column_fn()
if model_type == 'wide':
columns = wide_columns
elif model_type == 'deep':
columns = deep_columns
else:
columns = wide_columns + deep_columns
feature_spec = tf.feature_column.make_parse_example_spec(columns)
example_input_fn = (
tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec))
model.export_savedmodel(export_dir, example_input_fn,
strip_default_attrs=True) | 103,229 |
Converts `int_or_tuple` to height, width.
Several of the functions that follow accept arguments as either
a tuple of 2 integers or a single integer. A single integer
indicates that the 2 values of the tuple are the same.
This functions normalizes the input value by always returning a tuple.
Args:
int_or_tuple: A list of 2 ints, a single int or a tf.TensorShape.
Returns:
A tuple with 2 values.
Raises:
ValueError: If `int_or_tuple` it not well formed. | def _two_element_tuple(int_or_tuple):
if isinstance(int_or_tuple, (list, tuple)):
if len(int_or_tuple) != 2:
raise ValueError('Must be a list with 2 elements: %s' % int_or_tuple)
return int(int_or_tuple[0]), int(int_or_tuple[1])
if isinstance(int_or_tuple, int):
return int(int_or_tuple), int(int_or_tuple)
if isinstance(int_or_tuple, tf.TensorShape):
if len(int_or_tuple) == 2:
return int_or_tuple[0], int_or_tuple[1]
raise ValueError('Must be an int, a list with 2 elements or a TensorShape of '
'length 2') | 103,235 |
Transform numeric labels into onehot_labels.
Args:
labels: [batch_size] target labels.
num_classes: total number of classes.
scope: Optional scope for name_scope.
Returns:
one hot encoding of the labels. | def one_hot_encoding(labels, num_classes, scope=None):
with tf.name_scope(scope, 'OneHotEncoding', [labels]):
batch_size = labels.get_shape()[0]
indices = tf.expand_dims(tf.range(0, batch_size), 1)
labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype)
concated = tf.concat(axis=1, values=[indices, labels])
onehot_labels = tf.sparse_to_dense(
concated, tf.stack([batch_size, num_classes]), 1.0, 0.0)
onehot_labels.set_shape([batch_size, num_classes])
return onehot_labels | 103,238 |
Returns a dropout layer applied to the input.
Args:
inputs: the tensor to pass to the Dropout layer.
keep_prob: the probability of keeping each input unit.
is_training: whether or not the model is in training mode. If so, dropout is
applied and values scaled. Otherwise, inputs is returned.
scope: Optional scope for name_scope.
Returns:
a tensor representing the output of the operation. | def dropout(inputs, keep_prob=0.5, is_training=True, scope=None):
if is_training and keep_prob > 0:
with tf.name_scope(scope, 'Dropout', [inputs]):
return tf.nn.dropout(inputs, keep_prob)
else:
return inputs | 103,240 |
Flattens the input while maintaining the batch_size.
Assumes that the first dimension represents the batch.
Args:
inputs: a tensor of size [batch_size, ...].
scope: Optional scope for name_scope.
Returns:
a flattened tensor with shape [batch_size, k].
Raises:
ValueError: if inputs.shape is wrong. | def flatten(inputs, scope=None):
if len(inputs.get_shape()) < 2:
raise ValueError('Inputs must be have a least 2 dimensions')
dims = inputs.get_shape()[1:]
k = dims.num_elements()
with tf.name_scope(scope, 'Flatten', [inputs]):
return tf.reshape(inputs, [-1, k]) | 103,241 |
Constructor.
Args:
channel: A grpc.Channel. | def __init__(self, channel):
self.CheckConfig = channel.unary_unary(
'/pulumirpc.ResourceProvider/CheckConfig',
request_serializer=provider__pb2.CheckRequest.SerializeToString,
response_deserializer=provider__pb2.CheckResponse.FromString,
)
self.DiffConfig = channel.unary_unary(
'/pulumirpc.ResourceProvider/DiffConfig',
request_serializer=provider__pb2.DiffRequest.SerializeToString,
response_deserializer=provider__pb2.DiffResponse.FromString,
)
self.Configure = channel.unary_unary(
'/pulumirpc.ResourceProvider/Configure',
request_serializer=provider__pb2.ConfigureRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.Invoke = channel.unary_unary(
'/pulumirpc.ResourceProvider/Invoke',
request_serializer=provider__pb2.InvokeRequest.SerializeToString,
response_deserializer=provider__pb2.InvokeResponse.FromString,
)
self.Check = channel.unary_unary(
'/pulumirpc.ResourceProvider/Check',
request_serializer=provider__pb2.CheckRequest.SerializeToString,
response_deserializer=provider__pb2.CheckResponse.FromString,
)
self.Diff = channel.unary_unary(
'/pulumirpc.ResourceProvider/Diff',
request_serializer=provider__pb2.DiffRequest.SerializeToString,
response_deserializer=provider__pb2.DiffResponse.FromString,
)
self.Create = channel.unary_unary(
'/pulumirpc.ResourceProvider/Create',
request_serializer=provider__pb2.CreateRequest.SerializeToString,
response_deserializer=provider__pb2.CreateResponse.FromString,
)
self.Read = channel.unary_unary(
'/pulumirpc.ResourceProvider/Read',
request_serializer=provider__pb2.ReadRequest.SerializeToString,
response_deserializer=provider__pb2.ReadResponse.FromString,
)
self.Update = channel.unary_unary(
'/pulumirpc.ResourceProvider/Update',
request_serializer=provider__pb2.UpdateRequest.SerializeToString,
response_deserializer=provider__pb2.UpdateResponse.FromString,
)
self.Delete = channel.unary_unary(
'/pulumirpc.ResourceProvider/Delete',
request_serializer=provider__pb2.DeleteRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.Cancel = channel.unary_unary(
'/pulumirpc.ResourceProvider/Cancel',
request_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.GetPluginInfo = channel.unary_unary(
'/pulumirpc.ResourceProvider/GetPluginInfo',
request_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString,
response_deserializer=plugin__pb2.PluginInfo.FromString,
) | 103,246 |
Constructor.
Args:
channel: A grpc.Channel. | def __init__(self, channel):
self.Log = channel.unary_unary(
'/pulumirpc.Engine/Log',
request_serializer=engine__pb2.LogRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.GetRootResource = channel.unary_unary(
'/pulumirpc.Engine/GetRootResource',
request_serializer=engine__pb2.GetRootResourceRequest.SerializeToString,
response_deserializer=engine__pb2.GetRootResourceResponse.FromString,
)
self.SetRootResource = channel.unary_unary(
'/pulumirpc.Engine/SetRootResource',
request_serializer=engine__pb2.SetRootResourceRequest.SerializeToString,
response_deserializer=engine__pb2.SetRootResourceResponse.FromString,
) | 103,249 |
Constructor.
Args:
channel: A grpc.Channel. | def __init__(self, channel):
self.Analyze = channel.unary_unary(
'/pulumirpc.Analyzer/Analyze',
request_serializer=analyzer__pb2.AnalyzeRequest.SerializeToString,
response_deserializer=analyzer__pb2.AnalyzeResponse.FromString,
)
self.GetPluginInfo = channel.unary_unary(
'/pulumirpc.Analyzer/GetPluginInfo',
request_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString,
response_deserializer=plugin__pb2.PluginInfo.FromString,
) | 103,261 |
Constructor.
Args:
channel: A grpc.Channel. | def __init__(self, channel):
self.Invoke = channel.unary_unary(
'/pulumirpc.ResourceMonitor/Invoke',
request_serializer=provider__pb2.InvokeRequest.SerializeToString,
response_deserializer=provider__pb2.InvokeResponse.FromString,
)
self.ReadResource = channel.unary_unary(
'/pulumirpc.ResourceMonitor/ReadResource',
request_serializer=resource__pb2.ReadResourceRequest.SerializeToString,
response_deserializer=resource__pb2.ReadResourceResponse.FromString,
)
self.RegisterResource = channel.unary_unary(
'/pulumirpc.ResourceMonitor/RegisterResource',
request_serializer=resource__pb2.RegisterResourceRequest.SerializeToString,
response_deserializer=resource__pb2.RegisterResourceResponse.FromString,
)
self.RegisterResourceOutputs = channel.unary_unary(
'/pulumirpc.ResourceMonitor/RegisterResourceOutputs',
request_serializer=resource__pb2.RegisterResourceOutputsRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
) | 103,304 |
Constructor.
Args:
channel: A grpc.Channel. | def __init__(self, channel):
self.GetRequiredPlugins = channel.unary_unary(
'/pulumirpc.LanguageRuntime/GetRequiredPlugins',
request_serializer=language__pb2.GetRequiredPluginsRequest.SerializeToString,
response_deserializer=language__pb2.GetRequiredPluginsResponse.FromString,
)
self.Run = channel.unary_unary(
'/pulumirpc.LanguageRuntime/Run',
request_serializer=language__pb2.RunRequest.SerializeToString,
response_deserializer=language__pb2.RunResponse.FromString,
)
self.GetPluginInfo = channel.unary_unary(
'/pulumirpc.LanguageRuntime/GetPluginInfo',
request_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString,
response_deserializer=plugin__pb2.PluginInfo.FromString,
) | 103,312 |
Check if the specified event has the specified handler.
Args:
handler (callable): the callable event handler.
event_name: The event the handler attached to. Set this
to ``None`` to search all events. | def has_event_handler(self, handler, event_name=None):
if event_name is not None:
if event_name not in self._event_handlers:
return False
events = [event_name]
else:
events = self._event_handlers
for e in events:
for h, _, _ in self._event_handlers[e]:
if h == handler:
return True
return False | 103,322 |
Remove event handler `handler` from registered handlers of the engine
Args:
handler (callable): the callable event handler that should be removed
event_name: The event the handler attached to. | def remove_event_handler(self, handler, event_name):
if event_name not in self._event_handlers:
raise ValueError("Input event name '{}' does not exist".format(event_name))
new_event_handlers = [(h, args, kwargs) for h, args, kwargs in self._event_handlers[event_name]
if h != handler]
if len(new_event_handlers) == len(self._event_handlers[event_name]):
raise ValueError("Input handler '{}' is not found among registered event handlers".format(handler))
self._event_handlers[event_name] = new_event_handlers | 103,323 |
Decorator shortcut for add_event_handler.
Args:
event_name: An event to attach the handler to. Valid events are from :class:`~ignite.engine.Events` or
any `event_name` added by :meth:`~ignite.engine.Engine.register_events`.
*args: optional args to be passed to `handler`.
**kwargs: optional keyword args to be passed to `handler`. | def on(self, event_name, *args, **kwargs):
def decorator(f):
self.add_event_handler(event_name, f, *args, **kwargs)
return f
return decorator | 103,325 |
Runs the process_function over the passed data.
Args:
data (Iterable): Collection of batches allowing repeated iteration (e.g., list or `DataLoader`).
max_epochs (int, optional): max epochs to run for (default: 1).
Returns:
State: output state. | def run(self, data, max_epochs=1):
self.state = State(dataloader=data, epoch=0, max_epochs=max_epochs, metrics={})
try:
self._logger.info("Engine run starting with max_epochs={}.".format(max_epochs))
start_time = time.time()
self._fire_event(Events.STARTED)
while self.state.epoch < max_epochs and not self.should_terminate:
self.state.epoch += 1
self._fire_event(Events.EPOCH_STARTED)
hours, mins, secs = self._run_once_on_dataset()
self._logger.info("Epoch[%s] Complete. Time taken: %02d:%02d:%02d", self.state.epoch, hours, mins, secs)
if self.should_terminate:
break
self._fire_event(Events.EPOCH_COMPLETED)
self._fire_event(Events.COMPLETED)
time_taken = time.time() - start_time
hours, mins, secs = _to_hours_mins_secs(time_taken)
self._logger.info("Engine run complete. Time taken %02d:%02d:%02d" % (hours, mins, secs))
except BaseException as e:
self._logger.error("Engine run is terminating due to exception: %s.", str(e))
self._handle_exception(e)
return self.state | 103,329 |
Calculates accuracy using :class:`~ignite.metrics.ConfusionMatrix` metric.
Args:
cm (ConfusionMatrix): instance of confusion matrix metric
Returns:
MetricsLambda | def cmAccuracy(cm):
# Increase floating point precision
cm = cm.type(torch.float64)
return cm.diag().sum() / (cm.sum() + 1e-15) | 103,359 |
Calculates precision using :class:`~ignite.metrics.ConfusionMatrix` metric.
Args:
cm (ConfusionMatrix): instance of confusion matrix metric
average (bool, optional): if True metric value is averaged over all classes
Returns:
MetricsLambda | def cmPrecision(cm, average=True):
# Increase floating point precision
cm = cm.type(torch.float64)
precision = cm.diag() / (cm.sum(dim=0) + 1e-15)
if average:
return precision.mean()
return precision | 103,360 |
Calculates recall using :class:`~ignite.metrics.ConfusionMatrix` metric.
Args:
cm (ConfusionMatrix): instance of confusion matrix metric
average (bool, optional): if True metric value is averaged over all classes
Returns:
MetricsLambda | def cmRecall(cm, average=True):
# Increase floating point precision
cm = cm.type(torch.float64)
recall = cm.diag() / (cm.sum(dim=1) + 1e-15)
if average:
return recall.mean()
return recall | 103,361 |
Method to simulate scheduled values during num_events events.
Args:
num_events (int): number of events during the simulation.
lr_scheduler (subclass of `torch.optim.lr_scheduler._LRScheduler`): lr_scheduler object to wrap.
Returns:
list of pairs: [event_index, value] | def simulate_values(cls, num_events, lr_scheduler, **kwargs):
# This scheduler uses `torch.optim.lr_scheduler._LRScheduler` which
# should be replicated in order to simulate LR values and
# not perturb original scheduler.
copy_lr_scheduler = LRScheduler._replicate_lr_scheduler(lr_scheduler)
values = []
scheduler = cls(save_history=False, lr_scheduler=copy_lr_scheduler)
for i in range(num_events):
scheduler(engine=None)
values.append([i, scheduler.optimizer_param_groups[0][scheduler.param_name]])
return values | 103,419 |
Attach the logger to the engine and execute `log_handler` function at `event_name` events.
Args:
engine (Engine): engine object.
log_handler (callable): a logging handler to execute
event_name: event to attach the logging handler to. Valid events are from :class:`~ignite.engine.Events`
or any `event_name` added by :meth:`~ignite.engine.Engine.register_events`. | def attach(self, engine, log_handler, event_name):
if event_name not in State.event_to_attr:
raise RuntimeError("Unknown event name '{}'".format(event_name))
engine.add_event_handler(event_name, log_handler, self, event_name) | 103,457 |
Iterate until condition is met, with optional timeout in seconds.
The yielded value is that of the condition or False when timed out.
Args:
condition: Predicate function that is tested after every network
update.
timeout: Maximum time in seconds to wait.
If 0 then no timeout is used. | def loopUntil(
self, condition=None, timeout: float = 0) -> Iterator[object]:
endTime = time.time() + timeout
while True:
test = condition and condition()
if test:
yield test
return
elif timeout and time.time() > endTime:
yield False
return
else:
yield test
self.waitOnUpdate(endTime - time.time() if timeout else 0) | 104,822 |
List of account values for the given account,
or of all accounts if account is left blank.
Args:
account: If specified, filter for this account name. | def accountValues(self, account: str = '') -> List[AccountValue]:
if account:
return [v for v in self.wrapper.accountValues.values()
if v.account == account]
else:
return list(self.wrapper.accountValues.values()) | 104,823 |
List of account values for the given account,
or of all accounts if account is left blank.
This method is blocking on first run, non-blocking after that.
Args:
account: If specified, filter for this account name. | def accountSummary(self, account: str = '') -> List[AccountValue]:
if not self.wrapper.acctSummary:
# loaded on demand since it takes ca. 250 ms
self.reqAccountSummary()
if account:
return [v for v in self.wrapper.acctSummary.values()
if v.account == account]
else:
return list(self.wrapper.acctSummary.values()) | 104,824 |
List of positions for the given account,
or of all accounts if account is left blank.
Args:
account: If specified, filter for this account name. | def positions(self, account: str = '') -> List[Position]:
if account:
return list(self.wrapper.positions[account].values())
else:
return [v for d in self.wrapper.positions.values()
for v in d.values()] | 104,826 |
List of subscribed :class:`.PnL` objects (profit and loss),
optionally filtered by account and/or modelCode.
The :class:`.PnL` objects are kept live updated.
Args:
account: If specified, filter for this account name.
modelCode: If specified, filter for this account model. | def pnl(self, account='', modelCode='') -> List[PnL]:
return [v for v in self.wrapper.pnls.values() if
(not account or v.account == account) and
(not modelCode or v.modelCode == modelCode)] | 104,827 |
List of subscribed :class:`.PnLSingle` objects (profit and loss for
single positions).
The :class:`.PnLSingle` objects are kept live updated.
Args:
account: If specified, filter for this account name.
modelCode: If specified, filter for this account model.
conId: If specified, filter for this contract ID. | def pnlSingle(
self, account: str = '', modelCode: str = '',
conId: int = 0) -> List[PnLSingle]:
return [v for v in self.wrapper.pnlSingles.values() if
(not account or v.account == account) and
(not modelCode or v.modelCode == modelCode) and
(not conId or v.conId == conId)] | 104,828 |
Get ticker of the given contract. It must have been requested before
with reqMktData with the same contract object. The ticker may not be
ready yet if called directly after :meth:`.reqMktData`.
Args:
contract: Contract to get ticker for. | def ticker(self, contract: Contract) -> Ticker:
return self.wrapper.tickers.get(id(contract)) | 104,833 |
Request and return a list of snapshot tickers.
The list is returned when all tickers are ready.
This method is blocking.
Args:
contracts: Contracts to get tickers for.
regulatorySnapshot: Request NBBO snapshots (may incur a fee). | def reqTickers(
self, *contracts: List[Contract],
regulatorySnapshot: bool = False) -> List[Ticker]:
return self._run(
self.reqTickersAsync(
*contracts, regulatorySnapshot=regulatorySnapshot)) | 104,834 |
Fully qualify the given contracts in-place. This will fill in
the missing fields in the contract, especially the conId.
Returns a list of contracts that have been successfully qualified.
This method is blocking.
Args:
contracts: Contracts to qualify. | def qualifyContracts(self, *contracts: List[Contract]) -> List[Contract]:
return self._run(self.qualifyContractsAsync(*contracts)) | 104,835 |
Place the trades in the same One Cancels All (OCA) group.
https://interactivebrokers.github.io/tws-api/oca.html
Args:
orders: The orders that are to be placed together. | def oneCancelsAll(
orders: List[Order], ocaGroup: str, ocaType: int) -> List[Order]:
for o in orders:
o.ocaGroup = ocaGroup
o.ocaType = ocaType
return orders | 104,837 |
Retrieve commission and margin impact without actually
placing the order. The given order will not be modified in any way.
This method is blocking.
Args:
contract: Contract to test.
order: Order to test. | def whatIfOrder(self, contract: Contract, order: Order) -> OrderState:
return self._run(self.whatIfOrderAsync(contract, order)) | 104,838 |
Place a new order or modify an existing order.
Returns a Trade that is kept live updated with
status changes, fills, etc.
Args:
contract: Contract to use for order.
order: The order to be placed. | def placeOrder(self, contract: Contract, order: Order) -> Trade:
orderId = order.orderId or self.client.getReqId()
self.client.placeOrder(orderId, contract, order)
now = datetime.datetime.now(datetime.timezone.utc)
key = self.wrapper.orderKey(
self.wrapper.clientId, orderId, order.permId)
trade = self.wrapper.trades.get(key)
if trade:
# this is a modification of an existing order
assert trade.orderStatus.status not in OrderStatus.DoneStates
logEntry = TradeLogEntry(now, trade.orderStatus.status, 'Modify')
trade.log.append(logEntry)
self._logger.info(f'placeOrder: Modify order {trade}')
trade.modifyEvent.emit(trade)
self.orderModifyEvent.emit(trade)
else:
# this is a new order
order.clientId = self.wrapper.clientId
order.orderId = orderId
orderStatus = OrderStatus(status=OrderStatus.PendingSubmit)
logEntry = TradeLogEntry(now, orderStatus.status, '')
trade = Trade(
contract, order, orderStatus, [], [logEntry])
self.wrapper.trades[key] = trade
self._logger.info(f'placeOrder: New order {trade}')
self.newOrderEvent.emit(trade)
return trade | 104,839 |
Cancel the order and return the Trade it belongs to.
Args:
order: The order to be canceled. | def cancelOrder(self, order: Order) -> Trade:
self.client.cancelOrder(order.orderId)
now = datetime.datetime.now(datetime.timezone.utc)
key = self.wrapper.orderKey(
order.clientId, order.orderId, order.permId)
trade = self.wrapper.trades.get(key)
if trade:
if not trade.isDone():
status = trade.orderStatus.status
if (status == OrderStatus.PendingSubmit and not order.transmit
or status == OrderStatus.Inactive):
newStatus = OrderStatus.Cancelled
else:
newStatus = OrderStatus.PendingCancel
logEntry = TradeLogEntry(now, newStatus, '')
trade.log.append(logEntry)
trade.orderStatus.status = newStatus
self._logger.info(f'cancelOrder: {trade}')
trade.cancelEvent.emit(trade)
trade.statusEvent.emit(trade)
self.cancelOrderEvent.emit(trade)
self.orderStatusEvent.emit(trade)
if newStatus == OrderStatus.Cancelled:
trade.cancelledEvent.emit(trade)
else:
self._logger.error(f'cancelOrder: Unknown orderId {order.orderId}')
return trade | 104,840 |
It is recommended to use :meth:`.accountValues` instead.
Request account values of multiple accounts and keep updated.
This method is blocking.
Args:
account: If specified, filter for this account name.
modelCode: If specified, filter for this account model. | def reqAccountUpdatesMulti(
self, account: str = '', modelCode: str = ''):
self._run(self.reqAccountUpdatesMultiAsync(account, modelCode)) | 104,841 |
It is recommended to use :meth:`.fills` or
:meth:`.executions` instead.
Request and return a list a list of fills.
This method is blocking.
Args:
execFilter: If specified, return executions that match the filter. | def reqExecutions(
self, execFilter: ExecutionFilter = None) -> List[Fill]:
return self._run(self.reqExecutionsAsync(execFilter)) | 104,842 |
Start a subscription for profit and loss events.
Returns a :class:`.PnL` object that is kept live updated.
The result can also be queried from :meth:`.pnl`.
https://interactivebrokers.github.io/tws-api/pnl.html
Args:
account: Subscribe to this account.
modelCode: If specified, filter for this account model. | def reqPnL(self, account: str, modelCode: str = '') -> PnL:
key = (account, modelCode)
assert key not in self.wrapper.pnlKey2ReqId
reqId = self.client.getReqId()
self.wrapper.pnlKey2ReqId[key] = reqId
pnl = PnL(account, modelCode)
self.wrapper.pnls[reqId] = pnl
self.client.reqPnL(reqId, account, modelCode)
return pnl | 104,843 |
Cancel PnL subscription.
Args:
account: Cancel for this account.
modelCode: If specified, cancel for this account model. | def cancelPnL(self, account, modelCode: str = ''):
key = (account, modelCode)
reqId = self.wrapper.pnlKey2ReqId.pop(key, None)
if reqId:
self.client.cancelPnL(reqId)
self.wrapper.pnls.pop(reqId, None)
else:
self._logger.error(
'cancelPnL: No subscription for '
f'account {account}, modelCode {modelCode}') | 104,844 |