finish dataset parsing
Browse files- aes_enem_dataset.py +71 -5
aes_enem_dataset.py
CHANGED
@@ -47,7 +47,8 @@ _HOMEPAGE = ""
|
|
47 |
_LICENSE = ""
|
48 |
|
49 |
_URLS = {
|
50 |
-
"sourceAOnly": "
|
|
|
51 |
"sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceB.tar.gz?download=true",
|
52 |
}
|
53 |
|
@@ -86,6 +87,9 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
86 |
# You will be able to load one or the other configurations in the following list with
|
87 |
BUILDER_CONFIGS = [
|
88 |
datasets.BuilderConfig(name="sourceAOnly", version=VERSION, description="TODO"),
|
|
|
|
|
|
|
89 |
datasets.BuilderConfig(
|
90 |
name="sourceB",
|
91 |
version=VERSION,
|
@@ -208,6 +212,24 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
208 |
html_parser.parse(self.config.name)
|
209 |
return html_parser
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
def _generate_splits(self, filepath: str, train_size=0.7):
|
212 |
df = pd.read_csv(filepath)
|
213 |
buckets = df.groupby("mapped_year")["id_prompt"].unique().to_dict()
|
@@ -251,7 +273,53 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
251 |
train_df = pd.concat(train_set)
|
252 |
val_df = pd.concat(val_set)
|
253 |
test_df = pd.concat(test_set)
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
# Data Validation Assertions
|
256 |
assert (
|
257 |
len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
|
@@ -262,8 +330,6 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
262 |
assert (
|
263 |
len(set(val_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
|
264 |
), "Overlap between val and test id_prompt"
|
265 |
-
# TODO if self.config.name == sourceAWithGrader
|
266 |
-
dirname = os.path.dirname(filepath)
|
267 |
train_df.to_csv(f"{dirname}/train.csv", index=False)
|
268 |
val_df.to_csv(f"{dirname}/validation.csv", index=False)
|
269 |
test_df.to_csv(f"{dirname}/test.csv", index=False)
|
@@ -499,7 +565,7 @@ class HTMLParser:
|
|
499 |
if key != config_name:
|
500 |
continue # TODO improve later, we will only support a single config at a time
|
501 |
if "sourceA" in config_name:
|
502 |
-
self.sourceA = f"{filepath}/
|
503 |
elif config_name == "sourceB":
|
504 |
self.sourceB = f"{filepath}/sourceB/sourceB.csv"
|
505 |
file = self.sourceA if self.sourceA else self.sourceB
|
|
|
47 |
_LICENSE = ""
|
48 |
|
49 |
_URLS = {
|
50 |
+
"sourceAOnly": "sourceAWithGraders.tar.gz",
|
51 |
+
"sourceAWithGraders": "sourceAWithGraders.tar.gz",
|
52 |
"sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceB.tar.gz?download=true",
|
53 |
}
|
54 |
|
|
|
87 |
# You will be able to load one or the other configurations in the following list with
|
88 |
BUILDER_CONFIGS = [
|
89 |
datasets.BuilderConfig(name="sourceAOnly", version=VERSION, description="TODO"),
|
90 |
+
datasets.BuilderConfig(
|
91 |
+
name="sourceAWithGraders", version=VERSION, description="TODO"
|
92 |
+
),
|
93 |
datasets.BuilderConfig(
|
94 |
name="sourceB",
|
95 |
version=VERSION,
|
|
|
212 |
html_parser.parse(self.config.name)
|
213 |
return html_parser
|
214 |
|
215 |
+
def _parse_graders_data(self, dirname):
|
216 |
+
map_grades = {"0": 0, "1": 40, "2": 80, "3": 120, "4": 160, "5": 200}
|
217 |
+
|
218 |
+
def map_list(grades_list):
|
219 |
+
result = [map_grades.get(item, None) for item in grades_list]
|
220 |
+
sum_grades = sum(result)
|
221 |
+
result.append(sum_grades)
|
222 |
+
return result
|
223 |
+
|
224 |
+
grader_a = pd.read_csv(f"{dirname}/GraderA.csv")
|
225 |
+
grader_b = pd.read_csv(f"{dirname}/GraderB.csv")
|
226 |
+
|
227 |
+
for grader in [grader_a, grader_b]:
|
228 |
+
grader.grades = grader.grades.apply(lambda x: x.strip("[]").split(", "))
|
229 |
+
grader.grades = grader.grades.apply(map_list)
|
230 |
+
|
231 |
+
return grader_a, grader_b
|
232 |
+
|
233 |
def _generate_splits(self, filepath: str, train_size=0.7):
|
234 |
df = pd.read_csv(filepath)
|
235 |
buckets = df.groupby("mapped_year")["id_prompt"].unique().to_dict()
|
|
|
273 |
train_df = pd.concat(train_set)
|
274 |
val_df = pd.concat(val_set)
|
275 |
test_df = pd.concat(test_set)
|
276 |
+
dirname = os.path.dirname(filepath)
|
277 |
+
if self.config.name == "sourceAWithGraders":
|
278 |
+
grader_a, grader_b = self._parse_graders_data(dirname)
|
279 |
+
grader_a_data = pd.merge(
|
280 |
+
train_df[["id", "id_prompt"]],
|
281 |
+
grader_a,
|
282 |
+
on=["id", "id_prompt"],
|
283 |
+
how="inner",
|
284 |
+
)
|
285 |
+
grader_b_data = pd.merge(
|
286 |
+
train_df[["id", "id_prompt"]],
|
287 |
+
grader_b,
|
288 |
+
on=["id", "id_prompt"],
|
289 |
+
how="inner",
|
290 |
+
)
|
291 |
+
train_df = pd.concat([train_df, grader_a_data])
|
292 |
+
train_df = pd.concat([train_df, grader_b_data])
|
293 |
+
|
294 |
+
grader_a_data = pd.merge(
|
295 |
+
val_df[["id", "id_prompt"]],
|
296 |
+
grader_a,
|
297 |
+
on=["id", "id_prompt"],
|
298 |
+
how="inner",
|
299 |
+
)
|
300 |
+
grader_b_data = pd.merge(
|
301 |
+
val_df[["id", "id_prompt"]],
|
302 |
+
grader_b,
|
303 |
+
on=["id", "id_prompt"],
|
304 |
+
how="inner",
|
305 |
+
)
|
306 |
+
val_df = pd.concat([val_df, grader_a_data])
|
307 |
+
val_df = pd.concat([val_df, grader_b_data])
|
308 |
+
|
309 |
+
grader_a_data = pd.merge(
|
310 |
+
test_df[["id", "id_prompt"]],
|
311 |
+
grader_a,
|
312 |
+
on=["id", "id_prompt"],
|
313 |
+
how="inner",
|
314 |
+
)
|
315 |
+
grader_b_data = pd.merge(
|
316 |
+
test_df[["id", "id_prompt"]],
|
317 |
+
grader_b,
|
318 |
+
on=["id", "id_prompt"],
|
319 |
+
how="inner",
|
320 |
+
)
|
321 |
+
test_df = pd.concat([test_df, grader_a_data])
|
322 |
+
test_df = pd.concat([test_df, grader_b_data])
|
323 |
# Data Validation Assertions
|
324 |
assert (
|
325 |
len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
|
|
|
330 |
assert (
|
331 |
len(set(val_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
|
332 |
), "Overlap between val and test id_prompt"
|
|
|
|
|
333 |
train_df.to_csv(f"{dirname}/train.csv", index=False)
|
334 |
val_df.to_csv(f"{dirname}/validation.csv", index=False)
|
335 |
test_df.to_csv(f"{dirname}/test.csv", index=False)
|
|
|
565 |
if key != config_name:
|
566 |
continue # TODO improve later, we will only support a single config at a time
|
567 |
if "sourceA" in config_name:
|
568 |
+
self.sourceA = f"{filepath}/sourceAWithGraders/sourceA.csv"
|
569 |
elif config_name == "sourceB":
|
570 |
self.sourceB = f"{filepath}/sourceB/sourceB.csv"
|
571 |
file = self.sourceA if self.sourceA else self.sourceB
|