Upload _eventnarrative.py
Browse files- _eventnarrative.py +77 -0
_eventnarrative.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
"""
|
4 |
+
The script used to load the dataset from the original source.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os
|
8 |
+
from collections import defaultdict
|
9 |
+
|
10 |
+
import json
|
11 |
+
import datasets
|
12 |
+
|
13 |
+
_CITATION = """\
|
14 |
+
@inproceedings{colas2021eventnarrative,
|
15 |
+
title={EventNarrative: A Large-scale Event-centric Dataset for Knowledge Graph-to-Text Generation},
|
16 |
+
author={Colas, Anthony and Sadeghian, Ali and Wang, Yue and Wang, Daisy Zhe},
|
17 |
+
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)},
|
18 |
+
year={2021}
|
19 |
+
}
|
20 |
+
"""
|
21 |
+
|
22 |
+
_DESCRIPTION = """\
|
23 |
+
EventNarrative is a knowledge graph-to-text dataset from publicly available open-world knowledge graphs, focusing on event-centric data.
|
24 |
+
EventNarrative consists of approximately 230,000 graphs and their corresponding natural language text, 6 times larger than the current largest parallel dataset.
|
25 |
+
It makes use of a rich ontology and all of the KGs entities are linked to the text."""
|
26 |
+
|
27 |
+
_URL = "https://www.kaggle.com/datasets/acolas1/eventnarration"
|
28 |
+
_LICENSE = "CC BY 4.0"
|
29 |
+
|
30 |
+
class EventNarrative(datasets.GeneratorBasedBuilder):
|
31 |
+
VERSION = datasets.Version("1.0.0")
|
32 |
+
|
33 |
+
def _info(self):
|
34 |
+
return datasets.DatasetInfo(
|
35 |
+
description=_DESCRIPTION,
|
36 |
+
features=datasets.Features({
|
37 |
+
"Event_Name": datasets.Value("string"),
|
38 |
+
"entity_ref_dict": datasets.Value("large_string"),
|
39 |
+
"keep_triples": datasets.Value("large_string"),
|
40 |
+
"narration": datasets.Value("large_string"),
|
41 |
+
"types": datasets.Value("string"),
|
42 |
+
"wikipediaLabel": datasets.Value("string"),
|
43 |
+
}),
|
44 |
+
supervised_keys=None,
|
45 |
+
homepage=_URL,
|
46 |
+
citation=_CITATION,
|
47 |
+
license=_LICENSE,
|
48 |
+
)
|
49 |
+
|
50 |
+
def _split_generators(self, dl_manager):
|
51 |
+
"""Returns SplitGenerators."""
|
52 |
+
return [
|
53 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split" : "train"}),
|
54 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"split" : "dev"}),
|
55 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split" : "test"}),
|
56 |
+
]
|
57 |
+
|
58 |
+
def _generate_examples(self, split):
|
59 |
+
"""Yields examples."""
|
60 |
+
id_ = 0
|
61 |
+
|
62 |
+
with open(f"{split}_data.json") as f:
|
63 |
+
j = json.load(f)
|
64 |
+
|
65 |
+
for example in j:
|
66 |
+
e = { key : str(value) for key, value in example.items()}
|
67 |
+
id_ += 1
|
68 |
+
yield id_, e
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == '__main__':
|
73 |
+
dataset = datasets.load_dataset(__file__)
|
74 |
+
|
75 |
+
import pdb; pdb.set_trace() # breakpoint ffb6df83 //
|
76 |
+
|
77 |
+
# dataset.push_to_hub("kasnerz/eventnarrative")
|