Datasets:
Tasks:
Object Detection
Size:
< 1K
File size: 6,888 Bytes
a549a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import collections
import json
import os
import datasets
_HOMEPAGE = "https://universe.roboflow.com/mohamed-traore-2ekkp/gtsdb---german-traffic-sign-detection-benchmark/dataset/1"
_LICENSE = "CC BY 4.0"
_CITATION = """\
@misc{ gtsdb---german-traffic-sign-detection-benchmark_dataset,
title = { GTSDB - German Traffic Sign Detection Benchmark Dataset },
type = { Open Source Dataset },
author = { Mohamed Traore },
howpublished = { \\url{ https://universe.roboflow.com/mohamed-traore-2ekkp/gtsdb---german-traffic-sign-detection-benchmark } },
url = { https://universe.roboflow.com/mohamed-traore-2ekkp/gtsdb---german-traffic-sign-detection-benchmark },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { jul },
note = { visited on 2023-01-16 },
}
"""
_CATEGORIES = ['animals', 'construction', 'cycles crossing', 'danger', 'no entry', 'pedestrian crossing', 'school crossing', 'snow', 'stop', 'bend', 'bend left', 'bend right', 'give way', 'go left', 'go left or straight', 'go right', 'go right or straight', 'go straight', 'keep left', 'keep right', 'no overtaking', 'no overtaking -trucks-', 'no traffic both ways', 'no trucks', 'priority at next intersection', 'priority road', 'restriction ends', 'restriction ends -overtaking -trucks--', 'restriction ends -overtaking-', 'restriction ends 80', 'road narrows', 'roundabout', 'slippery road', 'speed limit 100', 'speed limit 120', 'speed limit 20', 'speed limit 30', 'speed limit 50', 'speed limit 60', 'speed limit 70', 'speed limit 80', 'traffic signal', 'uneven road']
_ANNOTATION_FILENAME = "_annotations.coco.json"
class GERMANTRAFFICSIGNDETECTIONConfig(datasets.BuilderConfig):
"""Builder Config for german-traffic-sign-detection"""
def __init__(self, data_urls, **kwargs):
"""
BuilderConfig for german-traffic-sign-detection.
Args:
data_urls: `dict`, name to url to download the zip file from.
**kwargs: keyword arguments forwarded to super.
"""
super(GERMANTRAFFICSIGNDETECTIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_urls = data_urls
class GERMANTRAFFICSIGNDETECTION(datasets.GeneratorBasedBuilder):
"""german-traffic-sign-detection object detection dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
GERMANTRAFFICSIGNDETECTIONConfig(
name="full",
description="Full version of german-traffic-sign-detection dataset.",
data_urls={
"train": "https://huggingface.co/datasets/keremberke/german-traffic-sign-detection/resolve/main/data/train.zip",
"validation": "https://huggingface.co/datasets/keremberke/german-traffic-sign-detection/resolve/main/data/valid.zip",
"test": "https://huggingface.co/datasets/keremberke/german-traffic-sign-detection/resolve/main/data/test.zip",
},
),
GERMANTRAFFICSIGNDETECTIONConfig(
name="mini",
description="Mini version of german-traffic-sign-detection dataset.",
data_urls={
"train": "https://huggingface.co/datasets/keremberke/german-traffic-sign-detection/resolve/main/data/valid-mini.zip",
"validation": "https://huggingface.co/datasets/keremberke/german-traffic-sign-detection/resolve/main/data/valid-mini.zip",
"test": "https://huggingface.co/datasets/keremberke/german-traffic-sign-detection/resolve/main/data/valid-mini.zip",
},
)
]
def _info(self):
features = datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"category": datasets.ClassLabel(names=_CATEGORIES),
}
),
}
)
return datasets.DatasetInfo(
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(self.config.data_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"folder_dir": data_files["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"folder_dir": data_files["validation"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"folder_dir": data_files["test"],
},
),
]
def _generate_examples(self, folder_dir):
def process_annot(annot, category_id_to_category):
return {
"id": annot["id"],
"area": annot["area"],
"bbox": annot["bbox"],
"category": category_id_to_category[annot["category_id"]],
}
image_id_to_image = {}
idx = 0
annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
with open(annotation_filepath, "r") as f:
annotations = json.load(f)
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
image_id_to_annotations = collections.defaultdict(list)
for annot in annotations["annotations"]:
image_id_to_annotations[annot["image_id"]].append(annot)
filename_to_image = {image["file_name"]: image for image in annotations["images"]}
for filename in os.listdir(folder_dir):
filepath = os.path.join(folder_dir, filename)
if filename in filename_to_image:
image = filename_to_image[filename]
objects = [
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
]
with open(filepath, "rb") as f:
image_bytes = f.read()
yield idx, {
"image_id": image["id"],
"image": {"path": filepath, "bytes": image_bytes},
"width": image["width"],
"height": image["height"],
"objects": objects,
}
idx += 1
|