Datasets:

File size: 10,142 Bytes
fbf8c0c
 
5898e26
 
 
 
 
 
90242db
 
5898e26
 
02b2a53
61daf69
 
2d931ea
d683a0d
ade7051
d683a0d
ade7051
d683a0d
ade7051
 
 
 
 
d683a0d
 
ade7051
 
d683a0d
 
ade7051
d683a0d
 
ade7051
d683a0d
 
 
 
ade7051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a13516
ade7051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1c4c6a
ade7051
d683a0d
ade7051
 
 
 
 
 
 
 
 
 
 
 
 
d683a0d
 
ade7051
 
d683a0d
 
ade7051
d683a0d
 
ade7051
d683a0d
 
bbb7297
d683a0d
 
ab53d78
d683a0d
ab53d78
d683a0d
ab53d78
 
 
 
 
d683a0d
 
 
 
ab53d78
 
d683a0d
 
ab53d78
d683a0d
 
ab53d78
d683a0d
 
 
 
 
7d97f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d683a0d
 
7d97f9b
d683a0d
 
7d97f9b
d683a0d
 
 
 
 
c1c36d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d683a0d
 
c1c36d4
d683a0d
 
c1c36d4
d683a0d
 
ea47c13
d683a0d
 
 
 
 
 
 
 
 
 
1a13516
 
 
 
 
 
 
 
c1c4c6a
 
 
 
 
 
 
 
bbb7297
 
 
 
 
 
 
 
ea47c13
 
 
 
 
 
 
 
dd2cf05
 
02b2a53
 
 
 
 
bcfd8d1
4a31cde
 
 
 
 
 
 
 
02b2a53
df78f19
4b5b094
df78f19
 
 
8a290d1
02b2a53
 
 
 
 
 
 
 
 
cea98e3
02b2a53
 
 
 
 
 
 
 
 
cea98e3
02b2a53
 
0ed9f35
 
02b2a53
0ed9f35
 
02b2a53
 
 
0ed9f35
a679a0e
 
 
 
 
 
 
 
 
02b2a53
 
a679a0e
02b2a53
 
 
 
 
 
a679a0e
 
 
 
 
02b2a53
 
e3e0b40
 
 
 
 
 
 
1676aca
02b2a53
 
 
8a290d1
32da519
2d931ea
50af23d
 
 
 
 
 
2d931ea
df78f19
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
---
license: apache-2.0
task_categories:
- text-classification
tags:
- Ontologies
- Subsumption Inference
- Natural Language Inference
- Conceptual Knowledge
- LMs-as-KBs
pretty_name: OntoLAMA
size_categories:
- 1M<n<10M
language:
- en
dataset_info:
- config_name: bimnli
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': contradiction
          '1': entailment
  splits:
  - name: train
    num_bytes: 43363266
    num_examples: 235622
  - name: validation
    num_bytes: 4818648
    num_examples: 26180
  - name: test
    num_bytes: 2420273
    num_examples: 12906
  download_size: 34515774
  dataset_size: 50602187
- config_name: doid-atomic-SI
  features:
  - name: v_sub_concept
    dtype: string
  - name: v_super_concept
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': negative_subsumption
          '1': positive_subsumption
  - name: axiom
    dtype: string
  splits:
  - name: train
    num_bytes: 15803053
    num_examples: 90500
  - name: validation
    num_bytes: 1978584
    num_examples: 11312
  - name: test
    num_bytes: 1977582
    num_examples: 11314
  download_size: 5117922
  dataset_size: 19759219
- config_name: foodon-atomic-SI
  features:
  - name: v_sub_concept
    dtype: string
  - name: v_super_concept
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': negative_subsumption
          '1': positive_subsumption
  - name: axiom
    dtype: string
  splits:
  - name: train
    num_bytes: 128737404
    num_examples: 768486
  - name: validation
    num_bytes: 16090857
    num_examples: 96060
  - name: test
    num_bytes: 16098373
    num_examples: 96062
  download_size: 45668013
  dataset_size: 160926634
- config_name: foodon-complex-SI
  features:
  - name: v_sub_concept
    dtype: string
  - name: v_super_concept
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': negative_subsumption
          '1': positive_subsumption
  - name: axiom
    dtype: string
  - name: anchor_axiom
    dtype: string
  splits:
  - name: train
    num_bytes: 2553731
    num_examples: 3754
  - name: validation
    num_bytes: 1271721
    num_examples: 1850
  - name: test
    num_bytes: 8926305
    num_examples: 13080
  download_size: 2028889
  dataset_size: 12751757
- config_name: go-atomic-SI
  features:
  - name: v_sub_concept
    dtype: string
  - name: v_super_concept
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': negative_subsumption
          '1': positive_subsumption
  - name: axiom
    dtype: string
  splits:
  - name: train
    num_bytes: 152537233
    num_examples: 772870
  - name: validation
    num_bytes: 19060490
    num_examples: 96608
  - name: test
    num_bytes: 19069265
    num_examples: 96610
  download_size: 32379717
  dataset_size: 190666988
- config_name: go-complex-SI
  features:
  - name: v_sub_concept
    dtype: string
  - name: v_super_concept
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': negative_subsumption
          '1': positive_subsumption
  - name: axiom
    dtype: string
  - name: anchor_axiom
    dtype: string
  splits:
  - name: train
    num_bytes: 45328802
    num_examples: 72318
  - name: validation
    num_bytes: 5671713
    num_examples: 9040
  - name: test
    num_bytes: 5667069
    num_examples: 9040
  download_size: 5059364
  dataset_size: 56667584
- config_name: schemaorg-atomic-SI
  features:
  - name: v_sub_concept
    dtype: string
  - name: v_super_concept
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': negative_subsumption
          '1': positive_subsumption
  - name: axiom
    dtype: string
  splits:
  - name: train
    num_bytes: 103485
    num_examples: 808
  - name: validation
    num_bytes: 51523
    num_examples: 404
  - name: test
    num_bytes: 361200
    num_examples: 2830
  download_size: 144649
  dataset_size: 516208
configs:
- config_name: bimnli
  data_files:
  - split: train
    path: bimnli/train-*
  - split: validation
    path: bimnli/validation-*
  - split: test
    path: bimnli/test-*
- config_name: doid-atomic-SI
  data_files:
  - split: train
    path: doid-atomic-SI/train-*
  - split: validation
    path: doid-atomic-SI/validation-*
  - split: test
    path: doid-atomic-SI/test-*
- config_name: foodon-atomic-SI
  data_files:
  - split: train
    path: foodon-atomic-SI/train-*
  - split: validation
    path: foodon-atomic-SI/validation-*
  - split: test
    path: foodon-atomic-SI/test-*
- config_name: foodon-complex-SI
  data_files:
  - split: train
    path: foodon-complex-SI/train-*
  - split: validation
    path: foodon-complex-SI/validation-*
  - split: test
    path: foodon-complex-SI/test-*
- config_name: schemaorg-atomic-SI
  data_files:
  - split: train
    path: schemaorg-atomic-SI/train-*
  - split: validation
    path: schemaorg-atomic-SI/validation-*
  - split: test
    path: schemaorg-atomic-SI/test-*
---

# OntoLAMA: LAnguage Model Analysis for Ontology Subsumption Inference


### Dataset Summary

OntoLAMA is a set of language model (LM) probing datasets for ontology subsumption inference. 
The work follows the "LMs-as-KBs" literature but focuses on conceptualised knowledge extracted from formalised KBs 
such as the OWL ontologies. Specifically, the subsumption inference (SI) task is introduced and formulated in the
Natural Language Inference (NLI) style, where the sub-concept and the super-concept involved in a subsumption 
axiom are verbalised and fitted into a template to form the premise and hypothesis, respectively. 
The sampled axioms are verified through ontology reasoning. The SI task is further divided into Atomic SI and 
Complex SI where the former involves only atomic named concepts and the latter involves both atomic and complex concepts. 
Real-world ontologies of different scales and domains are used for constructing OntoLAMA and in total there are four Atomic 
SI datasets and two Complex SI datasets.

### Links

- **Dataset Specification**: https://krr-oxford.github.io/DeepOnto/ontolama/
- **Zenodo Release**: https://doi.org/10.5281/zenodo.6480540
- **Paper**: https://arxiv.org/abs/2302.06761 (Arxiv) or https://aclanthology.org/2023.findings-acl.213/ (ACL Anthology)

### Languages

The text in the dataset is in English, as used in the source ontologies. The associated BCP-47 code is `en`.

## Dataset Structure

### Data Instances


An example in the **Atomic SI** dataset created from the Gene Ontology (GO) is as follows:
```
{
    'v_sub_concept': 'ctpase activity',
    'v_super_concept': 'ribonucleoside triphosphate phosphatase activity',
    'label': 1,
    'axiom': 'SubClassOf(<http://purl.obolibrary.org/obo/GO_0043273> <http://purl.obolibrary.org/obo/GO_0017111>)'
}
```

An example in the **Complex SI** dataset created from the Food Ontology (FoodOn) is as follows:
```
{
    'v_sub_concept': 'ham and cheese sandwich that derives from some lima bean (whole)',
    'v_super_concept': 'lima bean substance',
    'label': 0,
    'axiom': 'SubClassOf(ObjectIntersectionOf(<http://purl.obolibrary.org/obo/FOODON_03307824> ObjectSomeValuesFrom(<http://purl.obolibrary.org/obo/RO_0001000> <http://purl.obolibrary.org/obo/FOODON_03302053>)) <http://purl.obolibrary.org/obo/FOODON_00002776>)',
    'anchor_axiom': 'EquivalentClasses(<http://purl.obolibrary.org/obo/FOODON_00002776> ObjectIntersectionOf(<http://purl.obolibrary.org/obo/FOODON_00002000> ObjectSomeValuesFrom(<http://purl.obolibrary.org/obo/RO_0001000> <http://purl.obolibrary.org/obo/FOODON_03302053>)) )'
}
```


An example in the **biMNLI** dataset created from the MNLI dataset is as follows:
```
{
    'premise': 'At the turn of the 19th century Los Angeles and Salt Lake City were among the burgeoning metropolises of the new American West.',
    'hypothesis': 'Salt Lake City was booming in the early 19th century.',
    'label': 1
}
```

### Data Fields

#### SI Data Fields
- `v_sub_concept`: verbalised sub-concept expression.
- `v_super_concept`: verbalised super-concept expression.
- `label`: a binary class label indicating whether two concepts really form a subsumption relationship (`1` means yes).
- `axiom`: a string representation of the original subsumption axiom which is useful for tracing back to the ontology.
- `anchor_axiom`: (for complex SI only) a string representation of the anchor equivalence axiom used for sampling the `axiom`.

#### biMNLI Data Fields
- `premise`: inheritated from the MNLI dataset.
- `hypothesis`: inheritated from the MNLI dataset.
- `label`: a binary class label indicating `contradiction` (`0`) or `entailment` (`1`).

### Data Splits

| Source     | #NamedConcepts | #EquivAxioms | #Dataset (Train/Dev/Test)                                              |
|------------|----------------|--------------|------------------------------------------------------------------------|
| Schema.org | 894            | -            | Atomic SI: 808/404/2,830                                               |
| DOID       | 11,157         | -            | Atomic SI: 90,500/11,312/11,314                                        |
| FoodOn     | 30,995         | 2,383        | Atomic SI: 768,486/96,060/96,062 <br /> Complex SI: 3,754/1,850/13,080 |
| GO         | 43,303         | 11,456       | Atomic SI: 772,870/96,608/96,610 <br /> Complex SI: 72,318/9,040/9,040 |
| MNLI       | -              | -            | biMNLI: 235,622/26,180/12,906                                          |


### Citation Information

The relevant paper has been accepted at Findings of ACL 2023.

```
@inproceedings{he2023language,
  title={Language Model Analysis for Ontology Subsumption Inference},
  author={He, Yuan and Chen, Jiaoyan and Jimenez-Ruiz, Ernesto and Dong, Hang and Horrocks, Ian},
  booktitle={Findings of the Association for Computational Linguistics: ACL 2023},
  pages={3439--3453},
  year={2023}
}
```

## Contact

Yuan He (`yuan.he(at)cs.ox.ac.uk`)